Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Построение уравнения степенной регрессииСодержание книги
Поиск на нашем сайте
Уравнение степенной агрессии имеет вид: где a, b параметры, которые определяются по данным таблицы наблюдений. Таблица наблюдений имеет вид
Прологарифмируем исходное уравнение и в результате получим Обозначим lny через y', lna как a', а lnx как x'. В результате подстановки получим Данное уравнение есть не что иное, как уравнение линейной регрессии. Для этого прологарифмируем исходные данные:
Далее необходимо выполнить известные нам вычислительные процедуры по нахождению коэффициентов a и b, используя прологарифмированные исходные данные. В результате получим значения коэффициентов b и a'. Параметр a можно найти по формуле
Двухфакторные и многофакторные уравнения регрессии Линейное двухфакторное уравнение регрессии имеет вид где a, b1, b2 параметры; x1, x2 экзогенные переменные; y эндогенная переменная. Степенное двухфакторное уравнение регрессии имеет вид Для нахождения параметров этого уравнения его необходимо прологарифмировать. В результате получим Следует помнить, что мы получим не параметр a, а его логарифм, который следует преобразовать в натуральное число. Линейное многофакторное уравнения регрессии имеет вид , где a, b1, bn параметры; x1, xn экзогенные переменные; y эндогенная переменная.
Оптимизация. Основные понятия. Оптимизация - поиск наилучшего решения с учетом ограничений. Для оптимизации ищется целевая функция. Эта функция конструируется искусственно на основе уравнений, описывающих объект оптимизации. Целевая функция обычно имеет много аргументов: φ=f (х1, х2,..., х n). Чтобы найти оптимальное значение, перебирают значение аргументов хi пошагово до тех пор, пока значение φ станет удовлетворять условиям оптимума. разработаны десятки методов оптимизации: - первый строгий математический метод предложил в 1840г. венгерский математик Коши - метод скорейшего спуска. При формулировании задач оптимизации обычно стараются ее свести к поиску минимума. МСС относится к классу градиентных методов. Градиент - вектор, указывающий на направление максимального возрастания функции. Антиградиент – на убывания функции. Для иллюстрации поиска экстремума в процессе оптимизации функций двух переменных используют линии равного уровня. Если задаться постоянным значением φ и так подбирать значения хi чтобы значение φ было равным заданному значению, то геометрическое место точек φ составит линию равного уровня. МСС - простейший метод оптимизации, пригодный для сложных систем. Работа метода хорошо иллюстрируется с помощью линий равного уровня. Порядок поиска оптимума: - выбирается исходная точка в виде значений параметров целевой функции: φ=f (х1, х2,..., х n). - ищется градиент; - движемся в направлении антиградиента с заданным шагом; - на каждом шаге проверяем выполнение условия движения, текущее значение φ должно быть меньше предыдущего. - если условие движения нарушается, то процесс останавливается, иначе, движение продолжается; - при нарушении условий движения уточняется одномерный минимум и ищется новый градиент; - условие останова: а) значение φ меньше заданного; б) разность значений соседних φ меньше заданной; в) количество шагов превышает допустимое. - если после останова минимума не удовлетворяет требованиям, то либо ищется другая исходная точка и процесс повторяется, либо выбирается другой метод оптимизации.
Одномерный поиск оптимума. метод скорейшего спуска представляет собой многомерный поиск, т.к. минимум ищется на разных направлениях. Когда минимум ищется только в одном направлении для уточнения направления следующего уровня - одномерный поиск. Одномерный поиск Для многомерного поиска разработаны десятки методов, для одного поиска около 1 десятка методов. Рассмотрим одномерное приближение. Метод последовательных приближений (р) P - длина шага оптимизации; φ - значение целевой функции 1. при нарушении условий движения (φi+1 > φi) движение останавливается 2. Возвращается на 1 шаг назад. 3. Делим длину шага на R где R = 3-10 4. Возобновляем движение с новым шагом. 5. При нарушении условий движения все повторяется, и т.д. Условия останова: - Значение j < заданного - Разность между соседними значениями j < заданной - Длина шага < заданной - Кол-во шагов превышает заданное. Любое из этих условий приводит к останову. Метод золотого сечения Если возьмем пропорцию: x1/x = x2/x1 = 0.618-mo (р) Такое соотношение называется золотой пропорцией. 1. При нарушении условий движения последний шаг делим в отношении золотой пропорции слева на право. 2. Этот же отрезок делим в золотой пропорции справа на лево. В результате получим 2 новые точки 3. Сравниваем значения j в новых точках. 4. Выбираем отрезок, которому соответствует меньшее из этих двух j. 5. Полученный отрезок делим в отношении золотой пропорции слева направо, и т.д. Условия останова те же, что и в предыдущем случае. Метод параболической аппроксимации (р) При нарушении условий значения j в последних 3-х точках подставляется в формулу решения системы 3-х уравнений для параболы. Это решение позволяет находить координаты минимума параболы, роходящий через 3 последние точки. Сравнение методов одномерного поиска МПП более прост (движемся, делим), но требует много шагов (м.б. 10 и 100 шагов). МЗС позволяет найти min за 3-4 шага. МПА более сложен, но позволяет найти min за 1 шаг. Но МПА обладает методической погрешностью, поскольку парабола отличается от истинной кривой; обычно эта погрешность невелика. В пакетах программ для расчета оптики обычно используется в качестве метода многомерного поиска демнорированый МСС, а в качестве метода одномерного поиска - МПА.
|
||||||||||||||||||||||||
Последнее изменение этой страницы: 2017-02-10; просмотров: 305; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.21.105.222 (0.006 с.) |