Протоколы маршрутизации RIP v1 и Rip V2 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Протоколы маршрутизации RIP v1 и Rip V2



RIP(англ. R outing I nformation P rotocol) — протокол, предназначен для сравнительно небольших и относительно однородных сетей (алгоритм Белмана-Форда). Протокол разработан в университете Калифорнии (Беркли), базируется на разработках фирмы Ксерокс и реализует те же принципы, что и программа маршрутизации routed, используемая в ОC Unix (4BSD). Маршрут здесь характеризуется вектором расстояния до места назначения. Предполагается, что каждый маршрутизатор является отправной точкой нескольких маршрутов до сетей, с которыми он связан. Описания этих маршрутов хранится в специальной таблице, называемой маршрутной. Таблица маршрутизации RIP содержит по записи на каждую обслуживаемую машину (на каждый маршрут). Запись должна включать в себя:

IP-адрес места назначения.

Метрика маршрута (от 1 до 15; число шагов до места назначения).

IP-адрес ближайшего маршрутизатора (gateway) по пути к месту назначения.

Таймеры маршрута.

Первым двум полям записи мы обязаны появлению термина вектор расстояния (место назначение - направление; метрика - модуль вектора). Периодически (раз в 30 сек) каждый маршрутизатор посылает широковещательно копию своей маршрутной таблицы всем соседям-маршрутизаторам, с которыми связан непосредственно. Маршрутизатор-получатель просматривает таблицу. Если в таблице присутствует новый путь или сообщение о более коротком маршруте, или произошли изменения длин пути, эти изменения фиксируются получателем в своей маршрутной таблице. Протокол RIP должен быть способен обрабатывать три типа ошибок:

1. Циклические маршруты. Так как в протоколе нет механизмов выявления замкнутых маршрутов, необходимо либо слепо верить партнерам, либо принимать меры для блокировки такой возможности.

2. Для подавления нестабильностей RIP должен использовать малое значение максимально возможного числа шагов (<16).

3. Медленное распространение маршрутной информации по сети создает проблемы при динамичном изменении маршрутной ситуации (система не поспевает за изменениями). Малое предельное значение метрики улучшает сходимость, но не устраняет проблему.

Поле версия для RIP равно 1 (для RIP-2 двум). Поле набор протоколов сети i определяет набор протоколов, которые используются в соответствующей сети (для Интернет это поле имеет значение 2). Поле расстояние до сети i содержит целое число шагов (от 1 до 15) до данной сети. В одном сообщении может присутствовать информация о 25 маршрутах. При реализации RIP можно выделить следующие режимы:

Инициализация, определение всех "живых" интерфейсов путем посылки запросов, получение таблиц маршрутизации от других маршрутизаторов. Часто используются широковещательные запросы.

Получен запрос. В зависимости от типа запроса высылается адресату полная таблица маршрутизации, или проводится индивидуальная обработка.

Получен отклик. Проводится коррекция таблицы маршрутизации (удаление, исправление, добавление).

Регулярные коррекции. Каждые 30 секунд вся или часть таблицы маршрутизации посылается всем соседним маршрутизаторам. Могут посылаться и специальные запросы при локальном изменении таблицы. RIP достаточно простой протокол, но, к сожалению не лишенный недостатков:

a. RIP не работает с адресами субсетей. Если нормальный 16-бит идентификатор ЭВМ класса B не равен 0, RIP не может определить является ли не нулевая часть cубсетевым ID, или полным IP-адресом.

b. RIP требует много времени для восстановления связи после сбоя в маршрутизаторе (минуты). В процессе установления режима возможны циклы.

c. Число шагов важный, но не единственный параметр маршрута, да и 15 шагов не предел для современных сетей.

Протокол RIP-2 (RFC-1388, 1993 год) является новой версией RIP, которая в дополнение к широковещательному режиму поддерживает мультикастинг; позволяет работать с масками субсетей. Поле маршрутный демон является идентификатором резидентной программы-маршрутизатора. Поле метка маршрута используется для поддержки внешних протоколов маршрутизации, сюда записываются коды автономных систем. При необходимости управления доступом можно использовать первые 20 байт с кодом набора протоколов сети 0xFFFF и меткой маршрута =2. Тогда в остальные 16 байт можно записать пароль.

Достоинство RIP –протокола – простота реализации, недостатки – большой поток служебных данных при обмене таблицами маршрутизации и не всегда корректное решение задачи с созданием ложных маршрутов. Недостатки RIP –протокола связаны с применяемым алгоритмом формирования таблиц маршрутизации. В алгоритмах состояния связей создание таблиц маршрутизации сложнее, однако в процессе работы маршрутизаторов существенно сокращается обмен служебными данными и отсутствуют ложные маршруты в форме петель и контуров.

 

Протокол OSPF

OSPF (англ. Open Shortest Path First) — протокол динамической маршрутизации, основанный на технологии отслеживания состояния канала (link-state technology) и использующий для нахождения кратчайшего пути Алгоритм Дейкстры (Dijkstra’s algorithm).

Протокол OSPF был разработан IETF в 1988 году. Последняя версия протокола представлена в RFC 2328. Протокол OSPF представляет собой протокол внутреннего шлюза (Interior Gateway Protocol — IGP). Протокол OSPF распространяет информацию о доступных маршрутах между маршрутизаторами одной автономной системы.

1. Маршрутизаторы обмениваются hello-пакетами через все интерфейсы, на которых активирован OSPF. Маршрутизаторы, разделяющие общий канал передачи данных, становятся соседями, когда они приходят к договоренности об определённых параметрах, указанных в их hello-пакетах.

2. На следующем этапе работы протокола маршрутизаторы будут пытаться перейти в состояние смежности со своими соседями. Переход в состояние смежности определяется типом маршрутизаторов, обменивающихся hello-пакетами, и типом сети, по которой передаются hello-пакеты. OSPF определяет несколько типов сетей и несколько типов маршрутизаторов. Пара маршрутизаторов, находящихся в состоянии смежности, синхронизирует между собой базу данных состояния каналов.

3. Каждый маршрутизатор посылает объявления о состоянии канала маршрутизаторам, с которыми он находится в состоянии смежности.

4. Каждый маршрутизатор, получивший объявление от смежного маршрутизатора, записывает передаваемую в нём информацию в базу данных состояния каналов маршрутизатора и рассылает копию объявления всем другим смежным с ним маршрутизаторам.

5. Рассылая объявления внутри одной OSPF-зоны, все маршрутизаторы строят идентичную базу данных состояния каналов маршрутизатора.

6. Когда база данных построена, каждый маршрутизатор использует алгоритм «кратчайший путь первым» для вычисления графа без петель, который будет описывать кратчайший путь к каждому известному пункту назначения с собой в качестве корня. Этот граф — дерево кратчайших путей.

7. Каждый маршрутизатор строит таблицу маршрутизации из своего дерева кратчайших путей.

Преимущества OSPF:

1. Для каждого адреса может быть несколько маршрутных таблиц, по одной на каждый вид IP-операции (TOS).

2. Каждому интерфейсу присваивается безразмерная цена, учитывающая пропускную способность, время транспортировки сообщения. Для каждой IP-операции может быть присвоена своя цена (коэффициент качества).

3. При существовании эквивалентных маршрутов OSFP распределяет поток равномерно по этим маршрутам.

4. Поддерживается адресация субсетей (разные маски для разных маршрутов).

5. При связи точка-точка не требуется IP-адрес для каждого из концов. (Экономия адресов!)

6. Применение мультикастинга вместо широковещательных сообщений снижает загрузку не вовлеченных сегментов.

Недостатки:

1. Трудно получить информацию о предпочтительности каналов для узлов, поддерживающих другие протоколы, или со статической маршрутизацией.

2. OSPF является лишь внутренним протоколом.



Поделиться:


Последнее изменение этой страницы: 2017-02-10; просмотров: 743; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.131.72 (0.007 с.)