МС применяемые в медицинской технике. Системы клинического мониторинга 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

МС применяемые в медицинской технике. Системы клинического мониторинга



Эффективность современных медицинских технологий тесно связана с совершенствованием методов и инструментальных средств объективного контроля состояния пациентов в процессе лечения.

В медицине критических состояний проблема непрерывного слежения за диагностической информацией занимает особое место, так как контроль текущего состояния пациента может играть жизненно важную роль.

Построение инструментальных средств диагностики состояния пациентов основано на регистрации биологических сигналов и их последующей обработке с целью определения показателей, характеризующих работу важнейших систем организма.

Биологические сигналы представляют собой разнообразные по характеру (электрические, механические, химические, и др.) проявления деятельности физиологических систем организма. Определение параметров и характеристик биологических сигналов и их оценка дополняют клиническую картину заболевания объективной диагностической информацией, позволяющей прогнозировать дальнейшее состояние пациента.

Развитие техники, появление электроники и микроэлектроники привели к созданию высокочувствительных методов регистрации биологических сигналов и эффективных средств их обработки для получения диагностической информации.

Один из основных диагностических методов медицины критических состояний, связанных с применением технических средств, — это клинический мониторинг, дающий возможность врачу следить за изменением во времени физиологических показателей организма. Непрерывный контроль текущих значений физиологических показателей позволяет выявлять тенденции их изменения, определять отклонения показателей от нормы с целью предупреждения опасностей и осложнений, возникающих в процессе лечения.

Методы исследования физиологических процессов, применяемые при использовании аппаратуры клинического мониторинга, должны обеспечивать непрерывность регистрации биологических сигналов в реальном масштабе времени в сочетании с высокой диагностической ценностью показателей, получаемых в результате обработки сигналов.

Для медицины критических состояний главную роль играет слежение за жизненно важными биологическими сигналами, позволяющими определить показатели сердечно-сосудистой системы, ЦНС, функции внешнего дыхания.

Этим требованиям удовлетворяет ряд методов исследования физиологических систем организма, широко используемых в медицине для получения физиологической информации с помощью аппаратуры функциональной диагностики. Одним из таких методов является электрокардиография — метод исследования электрической активности сердца, осуществляемый с помощью регистрации биопотенциалов сердца на поверхности тела в стандартных точках (отведениях). При регистрации биопотенциалов сердца формируется запись изменений во времени электрической активности сердца — электрокардиограмма (ЭКГ), контурный анализ которой позволяет проводить диагностику целого ряда заболеваний и болезненных состояний. Электрокардиография используется для визуального наблюдения ЭКГ с целью диагностики возникающих нарушений, а также слежения за показателями вариабельности сердечного ритма, отражающими состояние регуляторных процессов в организме.

Развитие средств регистрации и методов обработки биологических сигналов, а также широкое использование микропроцессорной техники послужило объединению отдельных приборов измерения и контроля физиологических параметров в мониторные системы, позволяющие вести комплексную оценку состояния пациента.

Рис. 5.1. Структурное построение клинического монитора:

I — датчики физиологических параметров;

2 - блок первичной обработки данных; 3 - блок анализа информации;

4 - регистратор; 5 - дисплей; 6 - память

В клинических мониторных системах осуществляются сбор физиологических данных, анализ полученной информации, определение диагностических показателей и представление результатов в удобном для диагностических целей виде (рис.5.1).

Сбор данных в мониторных системах основан на регистрации биологических сигналов, определении их параметров, отражающих протекание физиологических процессов в организме, преобразовании полученных физиологических параметров в цифровую форму для дальнейшей обработки и анализа средствами вычислительной техники.

Физиологические параметры могут быть измерены при регистрации непосредственно как измеряемые физические величины (например, температура, давление, биоэлектрические потенциалы), либо как величины, характеризующие взаимодействие физиологических процессов организма с физическими полями (например, как величина ослабления прошедших через исследуемые ткани оптического излучения, ультразвука, электромагнитных волн).

Для регистрации и измерения физиологических параметров служат датчики, содержащие чувствительные элементы, преобразующие биологический сигнал исследуемого физиологического процесса в электрический сигнал.

Первичная обработка электрических сигналов датчиков (например, усиление сигналов, фильтрация помех, аналого-цифровое преобразование), измерение амплитудно-временных характеристик сигналов, позволяют в ряде случаев получить показатели, имеющие диагностическую ценность.

На основе слежения за изменением интегрального показателя состояния строятся простые и наглядные способы отображения информации. Например, в одной из таких систем на дисплей наблюдения за состоянием больных в палатах выводится план отделения с расположением палат и размещением в них пациентов. Каждое место в палате отображается на плане в виде цветной пиктограммы. Изменение цвета пиктограммы от зеленого к красному соответствует изменению показателя состояния пациента от нормы к “тревоге” и легко распознается медицинским персоналом, ведущим круглосуточное наблюдение.

В последние годы мониторные системы преобразуются в клинические информационные системы, обладающие широкими возможностями по использованию баз медицинских данных.

В таких системах реализуется концепция “гибкого” мониторинга, основанная на использовании технологии компьютерных локальных сетей. Каждый мониторный прибор, осуществляющий контроль за состоянием пациента или управляющий его состоянием, имеет “сетевую карточку” — устройство, с помощью которого выходные данные приборов приводятся к единому стандартному виду для осуществления обмена данными в компьютерной сети клиники. Прикроватные мониторы, пульсоксиметры, инфузионные дозаторы, наркозно-дыхательная и другая аппаратура связываются с центральным компьютером - “рабочей станцией”.

Положительным в использовании компьютерных сетей в медицинских учреждениях является и то, что соединение всех приборов осуществляется с помощью дешевого телефонного кабеля, а это существенно снижает стоимость оборудования клиники средствами мониторинга.

“Рабочая станция” становится общим коллектором данных, поступающих со всех мониторных приборов. Данные о жизненно важных физиологических показателях и параметрах передаются от рабочей станции на многодисплейные мониторы поста наблюдения за состоянием пациентов. Рабочая станция связывается с базой данных, являющейся ядром клинической информационной системы, что позволяет заносить данные пациента в “электронную” историю болезни, которая при необходимости записывается на пластиковую карточку, хранящуюся у пациента, или может быть распечатана в привычном для врача виде. Компьютерная сеть охватывает все источники информации клиники: приемное отделение, клинические лаборатории, кабинеты функциональной диагностики, получения медицинских изображений и др. Это позволяет концентрировать на рабочей станции все данные, относящиеся к пациенту.

Локальная сеть системы имеет выход в сеть телемедицины, которая, в свою очередь, дает возможность проводить консультации с ведущими специалистами других клиник. Терминалы системы могут быть установлены на любом рабочем месте врача, предоставляя ему всю необходимую информацию о пациенте. Имеется возможность пользования базами знаний, предоставляющими обширный справочно-информационный материал, а также стандартные программные приложения, позволяющие вести обработку медицинских данных.

Таким образом, современные системы клинического мониторинга осуществляют не только многопараметровый контроль за состоянием пациента, но и подсказывают решения по диагностике, выбору оптимальной тактики лечения и даже проведению неотложной интенсивной терапии.

Ценность использования систем мониторинга в клинической практике определяется следующими факторами:

• высокой точностью и объективностью получаемой диагностической информации;

• слежением за изменениями жизненно важных показателей организма в реальном масштабе времени, определяемым высоким быстродействием обработки физиологической информации;

• возможностью одновременной обработки изменений нескольких
физиологических параметров и установлением связи между ними;

• ранним выявлением признаков нарушения управления в системах
организма;

• наблюдением за изменениями диагностических показателей, являющихся производными от текущих значений физиологических параметров (например, слежение за изменением периферического сопротивления, сердечного выброса, индексов активности вегетативной регуляции и т. п.).

Перечисленные факторы делают методы и средства клинического мониторинга незаменимыми для эффективного ведения больных, находящихся в критических состояниях.

Мониторинг параметров АД может быть реализован путем использования косвенных методов измерения параметров давления крови с помощью окклюзионной манжетки. Наибольшее распространение в клинической практике получило измерение АД в плечевой артерии, при котором окклюзионная манжетка охватывает соответствующий участок правой или левой руки пациента. Увеличение давления воздуха в манжетке (компрессия) приводит к изменению артериального кровотока под манжеткой, а также в дистальном участке конечности. Если давление воздуха в манжетке превысит значение диастолическо-го давления крови, артериальный кровоток в руке дистальнее манжетки изменяет свои параметры.

Аускультативный метод измерения параметров АД или метод Н.С. Короткова (1905) основан на анализе характерных звуков, так называемых тонов Н.С. Короткова (далее тонов), регистрируемых в простейшем варианте с помощью фонендоскопа на дистальном отрезке артерии, непосредственно у нижнего края окклюзионной манжетки при определенном давлении воздуха в манжетке, регистрируемом манометром.

По методу Н.С. Короткова, первоначально при измерении АД давление в манжетке, охватывающей сосуд, увеличивают до полного прекращения кровотока (артериального пульса) в дистальной части руки. Затем включают плавную декомпрессию (стравливание воздуха из манжетки). В момент открытия артерии кровотоку начинают прослушиваться первые тоны. В этот же момент давление крови на вершине артериальной пульсации становится чуть больше давления воздуха в манжетке и артерия на короткое время “открывается”, порождая звуковые колебания. Давление в манжетке, отсчитываемое по показаниям манометра и соответствующее появлению первых тонов, принимается за систолическое АД. Происхождение регистрируемых тонов можно объяснить турбулентным движением крови по сжатому сосуду, а также неустойчивым поведением стенок после “открытия” сжатой артерии, приводящим к звуковым колебаниям характерного спектрального состава.

При дальнейшей плавной декомпрессии (около 3 мм рт. ст. на один удар пульса) характер звуковых тонов изменяется: они становятся глуше (их частотный спектр сдвигается в сторону более низких частот) и затем исчезают. Считается, что момент приглушения или исчезновение тонов соответствует равенству давления воздуха в манжетке и минимальному динамическому давлению крови, т. е. диастолической величине АД.

Следует отметить, что спектр сосудистых тонов расположен в более высокочастотной области, чем звуковые колебания, регистрируемые при анализе артериальных пульсаций давления. Поэтому выделение тонов можно осуществить автоматически путем частотной фильтрации сигналов микрофонного датчика, расположенного под манжеткой.

Метод Н.С. Короткова получил широкое распространение в клинической практике и используется при построении мониторов АД. Считается, что этот метод дает погрешность не более 2...3 мм рт. ст. Измерение давления в манжетке осуществляется с помощью тензометрического или емкостного датчиков давления. Для обнаружения тонов Н.С. Короткова используются миниатюрные пьезомикрофоны, работающие в полосе частот 10...801 Гц. Для снижения погрешностей измерений, обусловленных близостью спектров тонов и звуков артериальных пульсаций, попадающих в микрофон, а также для ослабления артефактов движения в мониторах АД используется дифференциальный метод выделения тонов. В нижней части окклюзионной манжетки устанавливается микрофон, состоящий из двух чувствительных элементов А и Б (рис. 5.2).

Рис. 5.2. Дифференциальный датчик тонов Н.С. Короткова

При снижении давления в манжетке до систолического значения, ниже манжетки регистрируются пульсации давления и тоны. Акустические характеристики манжетки таковы, что она плохо передает высокочастотные тоны, поэтому сигналы, регистрируемые микрофоном по каналам А и Б, будут различаться. По каналу А регистрируется весь спектр колебаний, в который входят пульсации давления, тоны, артефакты движения. По каналу Б регистрируются сигналы в диапазоне 0,5...5 Гц, в который попадают только пульсации давления и артефакты движения.


21. Мехатронное устройство для определения упруго-диссипативных свойств кожи.

Для количественного описания физических свойств биологических тканей могут использоваться параметры, характеризующие упругие и диссипативные свойства исследуемой поверхности. Для определения свойств биологических тканей широкое применение получили устройства вибрационного типа, основанные на анализе особенностей изменения динамики поведения контактного элемента (индентора) в результате различного рода вибрационного взаимодействия с кожной поверхностью

Схема устройства для определения упруго-диссипативных свойств биологических тканей представлена на рис. 5.3.

Рис. 5.3. Схема устройства для определения механических свойств биологических тканей

Устройство состоит из корпуса 1, в котором консольно закреплена упругая направляющая 2 индентора 3, которая используется для запасания энергии, используемой для удара и для поджатия индентора, гарантирующего безотрывной режим колебаний контактного элемента с кожным покровом 10. На конце направляющей 2 установлены: индентор 3, датчик перемещения (используется датчик магнитного поля на эффекте Холла) 4, упор-ограничитель 5. В корпусе 1 крепятся постоянный магнит 6, спусковой электромагнит 7, винт регулировки чувствительности 8. Регулировка чувствительности необходима для проведения измерений у людей различного возраста и пола. Датчик перемещения 4 через блок аналого-цифрового цифроаналогового преобразователя подключен к ЭВМ 9.

Принцип работы заключен в следующем. На пусковой электромагнит подается электрическое напряжение, в результате чего индентор с датчиком притягивается в крайнее верхнее положение, регулируемое винтом 8. При этом упругая направляющая 2 изгибается, далее подается сигнал на выключение пускового электромагнита. Вследствие деформации направляющей индентор ударяет по тестируемому участку кожной поверхности, происходит совместное движение исследуемого участка кожи и индентора. Колебательный процесс индентора регистрируется датчиком Холла, сигнал с которого регистрируется в виде зависимости напряжения от времени. Для получения среднего результата измерений процесс удара и считывания данных повторяется определенное число раз. Этот способ позволяет исключить случайные погрешности измерений. Колебания напряжения, поступающего с датчика, считаются пропорциональными датчика Холла. По полученным данным с помощью специально разработанного алгоритма можно найти параметры, характеризующие упругие и диссипативные свойства исследуемой поверхности. Представленный прибор является мобильным устройством, что позволяет уменьшить время процедуры, а также значительно облегчить диагностику для пациента и оператора.



Поделиться:


Последнее изменение этой страницы: 2017-02-09; просмотров: 560; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.184.214 (0.023 с.)