Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Плотность энергетических уровнейСодержание книги
Поиск на нашем сайте
Для того чтобы знать, как распределяются по энергиям электроны в кристалле, надо установить, как распределены внутри зон разрешенные квантовые состояния, а во-вторых, как они заполняются электронами, т.е. вероятность их заполнения. Концентрацию электронов, имеющих энергии, заключенные в интервале от Е до Е+dЕ, можно представить так:
где – функция плотности энергетических состояний; – вероятность заполнения энергетических уровней зарядоносите- лями.
где – энергия электрона, отсчитанная от границы зоны; – эффективная масса электрона, учитывающая энергетическую связь его с полями частиц кристалла; – элементарная ячейка пространства импульсов. Электронный газ в металлах всегда вырожден. Реальные температуры катодов около 2000° С. В этом случае используют распределение Ферми-Дирака:
, (1) где – энергия или уровень Ферми. При этом уравнение концентрации электронов принимает вид:
Проанализируем это уравнение. При Т = О и Е > ЕF первый член знаменателя обращается в бесконечность, а вероятность заполнения электронами энергетических уровней (WE) и соответственно вся правая часть уравнения оказывается равной нулю. Следовательно, при температуре абсолютного нуля в металле нет электронов с энергией больше ЕF. При Т = О и Е < ЕF первый член знаменателя - нуль, вероятность заполнения электронами энергетических уровней (WE) оказывается равной единице и кривая распределения электронов по энергиям (кривая Т=0 на рис. 2.10) представляет собой обратную параболу. Итак, у металлов константа ЕF имеет простой и наглядный физический смысл: это наибольшая энергия, которой обладают электроны при температуре абсолютного нуля. При Т > О и Е = ЕF получим и В результате приходим к очень важному для последующего изложения выводу, применимому не только к металлам, но также к диэлектрикам и полупроводникам: уровень Ферми – это такой уровень, вероятность заполнения которого электронами при любых температурах равна 1/2. При Т > О и Е < ЕF величина (WE) несколько меньше единицы. Вместе с тем для энергий Е > ЕF появляется некоторая отличная от нуля вероятность заполнения энергетических уровней. Распределение валентных электронов металла по энергиям при Т > О соответствует кривой на рис. 2.10.
Рис. 2.10 – Распределение электронов по энергиям в металле
Вопросы распределения по энергиям носителей заряда в полупроводниках будут рассматриваться позднее. Мы же остановимся на вопросе расположения уровня Ферми в кристаллах. В проводниках уровень Ферми располагается на уровне перехода из зоны проводимости в валентную зону. У диэлектриков и собственных полупроводников уровень Ферми располагается в середине запрещенной зоны и практически не зависит от температуры. У донорного полупроводника уровень Ферми при Т = О располагается посередине между донорным уровнем и дном зоны проводимости, а при повышении температуры он смещается вниз, причем тем сильнее, чем меньше концентрация донорной примеси. У дырочного полупроводника уровень Ферми при Т = О располагается посередине между акцепторным уровнем и потолком валентной зоны, а при повышении температуры он смещается вверх, причем тем сильнее, чем меньше концентрация акцепторов.
|
||||
Последнее изменение этой страницы: 2017-02-08; просмотров: 642; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.64.210 (0.006 с.) |