Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Биоиндикация в оценке состояния водной экосистемыСодержание книги
Поиск на нашем сайте
Водная экосистема понимается нами как единство среды и обитающей в ней биоты. Водная экосистема формируется под действием и в результате процессов, протекающих на бассейне водосбора и на протяжении всего русла реки. Химический анализ, поэлементно оценивая среду обитания, лишь косвенно может указывать факторы, оказывающие влияние на экосистему или являющиеся результатом ее жизнедеятельности. С другой стороны, биотестирование по водным организмам дает частную оценку среды, касающуюся лишь объекта тестирования. Наиболее адекватно состояние водной системы можно оценить по составу сообществ водных организмов (Баринова, 1998a; Рысин, 1995). В ряде отечественных и зарубежных систем оценки используются показатели или индексы, связанные с развитием той или другой группы организмов от рыб до водорослей (Унифицированные..., 1977). Водоросли, являясь автотрофами, составляют основу трофической пирамиды, а, следовательно, первыми участвуют в утилизации трофического базиса экосистемы, потребляя для построения органического вещества биогенные соединения азота и фосфора (рис. 5). Интенсивность биогенной нагрузки отражается не только в обилии развивающихся на этой базе водорослей, но также и на их видовом составе. Именно эти характеристики - изменение численности и видового состава при изменении трофической базы - водорослей используются в биоиндикационных методах. Биоиндикационные методы на основе видового состава сообществ и обилия водорослей дают интегральную оценку результатов всех природных и антропогенных процессов, протекавших в водном объекте. Кроме того, биоиндикация по сообществам водорослей - дешевый экспресс-метод, в то время как химические анализы дорогостоящи. Преимуществом автотрофов является то, что они первыми в трофической цепи реагируют на загрязнители, не успевая их значительно накапливать. Реакцией на изменение условий среды является изменение состава и обилия водных организмов, причем смена сообщества водорослей может произойти за несколько часов при смене условий среды. Экосистемный биоиндикационный подход к оценке качества среды обитания, по существу, аналогичен антропоцентрическому (приоритетному в большинстве западных стран), так как человек реагирует на среду в целом, а не на отдельные ее факторы. Методы биоиндикации по высшему трофическому звену наземных экосистем бассейна водосбора еще не достаточно разработаны. Биоиндикационные оценки по низшим трофическим уровням используются довольно широко (Вислоух, 1916; Макрушин, 1974; Унифицированные..., 1977; Pantle, Buck, 1955). Хотя есть много попыток сопоставить изменения среды обитания и биотическую динамику, но пока трудно увидеть в них целостную систему. Самым существенным звеном в методах биоиндикации является видовой состав сообществ водорослей. Система биоиндикации развивалась таким образом, что сначала было замечено появление или исчезновение определенных видов в конкретных условиях среды. То есть, в качестве индикатора условий использовалась система "вид-индикатор: есть - нет". Система развивалась по направлению расширения списка видов-индикаторов, которые позднее стали группироваться по наиболее ярко выраженным характеристикам условий. Количественные характеристики обилия видов включились в систему позднее сначала в балльной, а затем в долевой форме. Методы биоиндикации разрабатываются с начала 20 века и включают к настоящему моменту данные о почти 7000 видов-индикаторов по нескольким направлениям - местообитанию, температуре, подвижности водных масс и насыщенности их кислородом, солености, закислению, присутствию сероводорода, кальция, органическому загрязнению в дополнение списка видов, собранного нами ранее (Бариноваи др., 2000). рис. 5.
В основе биоиндикационного анализа лежит представление об иерархической организации биотического сообщества, которая выражена в виде модели трофической пирамиды (Sladecek, 1973). На нашем рисунке схематично показана миграция энергии (трансформация снизу вверх и перенос сверху вниз) по трофическим уровням, однако, взаимоотношения между уровнями в реальной экосистеме значительно сложнее (UNEP/IPCS, 2006). Разнообразие организмов, составляющих трофическую пирамиду, весьма сильно варьирует в зависимости от уровня трофической нагрузки (и воздействия стрессовых факторов, как будет показано ниже), что нашло отражение в эмпирической метафизической модели В. Сладечека (Sladecek, 1973), где учтено распределение групп организмов в зависимости от типов их питания (UNEP/IPCS, 2006). Именно распределение сначала групп организмов, а затем видов, по интервалам значений показателей среды стало основой биоиндикаторного анализа. Приведем несколько наиболее важных, устоявшихся и применяемых систем индикации показателей среды на основе видового состава и обилия видов водорослей. Система индикаторов солености вод построена на основе классификации Р. Кольбе (Kolbe, 1927) и усовершенствована Ф. Хустедтом (Hustedt, 1957). Она широко распространена в индикации состояния водных объектов (Stoermer, Smol, 1999), поскольку охватывает широкий интервал концентраций, свойственный природным водам. Виды-индикаторы в этой системе разделены на 4 группы: (1) полигалобы, обитающие в гиперсоленых водах от 40‰ до 300‰, (2) эугалобы, обитатели морских вод с соленостью 20‰-40‰, (3) мезогалобы, живущие в солоноватых прибрежных водах морей и эстуариях, также как и в континентальных водах с соленостью от 5‰ до 20‰, (4) олигогалобы, обитающие в пресных или слегка солоноватых водах от 0 до 5‰, включающие, в свою очередь, 3 группы: а) галофилы, преимущественно пресноводные, но распространенные также в водах с невысоким уровнем концентрации NaCl; б) индифференты, типично пресноводные, иногда встречающиеся в слегка солоноватых водах; в) галофобы, типично пресноводные, избегающие даже небольших концентраций NaCl. Среди индикаторов галобности (около 2600 таксонов) представлены, в основном, диатомовые водоросли. Общее представление об индикационном уровне разнообразия ограничивается рангом вида, однако, именно на соленость диатомовые водоросли реагируют на хлориды целыми родовыми группами (Ярыгин, Анисимова, 2004; Анисимова, Ярыгин, 2005.) Следует отметить, что реакция видов идет именно на хлориды, а не на общий ионный состав, в то время как в природных водах хлориды занимают определенное место, но присутствуют обычно и другие ионы (Meybeck, Helmer, 1989). Поскольку в полевых условиях легче измерять кондуктивность (электропроводность) для любых вод и/или минерализацию (TDS) для слабо минерализованных вод, то возникает необходимость в сопоставлении этих показателей с концентрациями хлоридов (табл. 7). 7. Классификация электропроводности и солености (Kolbe, 1927; Ehrlich, 1995) Виды, чувствительные к рН воды, объединены в систему классификации, разработанную Ф. Хустедтом (Hustedt, 1938-1939). Классификационная система включает 11 групп видов-индикаторов рН от алкалибионтов, обитающих в водах с рН = 8 и более, до ацидобионтов, живущих в кислых водах с рН = 5 и менее. Списки видов-индикаторов рН (Merilainen, 1967) в настоящее время составляют до 1800 видов. Виды, требующие определенной концентрации кислорода в воде (около 1500 таксонов), разделены на 4 класса (Cholnoky, 1968), а исследования, базирующиеся на работах Hustedt (1938-1939, 1957), Cholnoky (1968) и Van Dam (1975) относят виды к 5 экологическим группам по этому показателю (100%, 75%, 50%, 30%, 10% насыщения). Терпимость к воздействию приливной зоны отнесена к 6 классам и выделено 5 классов местообитания от реобионтов до лимнофилов (Simonsen, 1962). Индикация температурной устойчивости проведена по диатомовым (Patrick, 1971) (около 420 таксонов). Индикаторы метаболизма потребления азота разделены на 4 группы (от автотрофных видов, выживающих при очень низких концентрациях органически связанного азота, до гетеротрофных видов, нуждающихся в постоянно повышенных концентрациях органически связанного азота) согласно Cholnoky (1968) и Van Dam (1975). Для оценки степени органического загрязнения водоемов и водотоков (около 3900 индикаторных таксонов) в России и странах ближнего зарубежья наиболее широко применяется метод Пантле-Бука (Pantle, Buck, 1955) в модификации Сладечека (1967) по результатам ряда исследований, где проводился сравнительный анализ чувствительности разных индексов (Lafont, 1988; Leynaud, 1975). Используя графу Si, в приводимой ниже таблице можно рассчитать индекс органического загрязнения по сообществу водорослей с использованием формулы: где S - степень сапробности сообщества водорослей; s - сапробное занчение организма-сапробионта; h - частота встречаемости сапробионта в пробе.
Частоту встречаемости в баллах можно соотнести также с количественными характеристиками планктона или перифитона, имея которые легко воспользоваться переводом данных в баллы частоты встречаемости (табл. 8) и наоборот. 8. Баллы частоты встречаемости и обилие видов (Кузьмин, 1976) в комплексах водорослей по пятибалльной (Whitton et al., 1991) и шестибалльной (Корде, 1956) шкалам
Используя второй метод Т. Ватанабе (около 1000 таксонов) можно также рассчитать на основе данных графы D в таблице (часть2: табл. 1) степень органического загрязнения водоема или водотока по формуле: Индекс S меняется от 0 до 4, соответствует пяти классам качества вод и четырем зонам самоочищения. Индекс DAIpo меняется от 0 до 100 и соответствует тем же классам и зонам самоочищения (Баринова, 1990б). Соотнесение классов и зон в двух системах проведено авторами ранее (Баринова, Медведева, 1986). Подробнее методы расчетов и соотношения этих индексов органического загрязнения вод приведены в работах С. Бариновой и Л. Медведевой (1996, 1998). Третий метод оценки сапробности, привлекаемый нами, разработан в последние годы (Dell'Uomo, 1995) на основе системы Зелинки-Марвана (Zelinka, Marvan, 1961) для диатомовых водорослей (около 90 индикаторных таксонов; и применяется для оценки органического загрязнения в странах Средиземноморья, что важно, например, для соотнесения с результатами оценок по Израилю. Также как и в расчетах по методу В. Сладечека, здесь имеет значение сапробная валентность вида-индикатора и его обилие в сообществе, но вводится также индивидуальный видовой коэффициент. Расчет индексов EPI (Environmental Pollution Index) проводится по формуле: EPI = S aj rj ij / S aj rj, где EPI - индекс эвтрофикации/загрязнения для каждой станции; aj - обилие вида в сообществе по пятибалльной шкале; rj - постоянный видовой индекс EPi эвтрофикации/загрязнения; ij - коэффициент R, изменяющийся от 1 до 5. Индекс EPI рассчитывается по составу только диатомовых водорослей (список, коэффициенты и валентности приведены в части 2: табл. 3), варьирует от 1 до 4 и коррелирует с основными гидрохимическими показателями. Качество вод, определенное по индексам EPI, соответствует восьми градациям: · 0.0 < EPI < 0.5 - естественные незагрязненные воды; · 0.5 < EPI < 1.0 - воды высокого качества; · 0.1 < EPI < 1.5 - воды хорошего качества; · 1.5 < EPI < 2.0 - воды удовлетворительно качества; · 2.0 < EPI < 2.5 - слабо загрязненные воды; · 2.5 < EPI < 3.0 - умеренно загрязненные воды; · 3.0 < EPI < 3.5 - сильно загрязненные воды; · 3.5 < EPI < 4.0 - очень сильно загрязненные воды.
Разработка новых индексов, все более точно отражающих процессы, происходящие в водном объекте, его трофический статус, направлена на унификацию с последующим выходом на мониторинг (Padisak, al., 2006). Наш многолетний опыт работы по трем системам оценки органического загрязнения показал, что индексы DAIpo рассчитываются трудно, поскольку видов-индикаторов, имеющих релевантные валентности обычно в сообщества мало. Индексы EPI, также основанные только на диатомовых, не учитывают большую часть видов в сообществе, если оно составлено с доминированием не диатомовых, как, например, в р. Хедера или оз. Великое. Кроме того, расчеты в ряде случаев неадекватны, поскольку индекс выходит за рамки классификационной системы. 9. Соответствие уровней сапробности, галобности и трофии с классами качества вод по Делль Уомо (Dell'Uomo, 1995) Наиболее широко охватывающий возможные варианты состава сообществ индекс Сладечека S не только подходит для разнообразных сообществ, но и имеет большой список видов-индикаторов, среди которых не только водоросли, но и другие водные организмы, в том числе бесцветные жгутиковые, другие гетеротрофы, а также сосудистые растения и мхи, что весьма расширяет возможности его применения. Кроме того, в классификационной системе Сладечека имеется около сотни параметров воды, которые связаны с интервалами изменения индекса S. Именно эта связь дает возможность рассчитывать индексы WESI (ниже) и судить об активности процессов самоочищения и уровне токсического влияния. Индексы органического загрязнения включены в системы мониторинга ряда стран Европейского Союза и СНГ (Кимстач, 1993).
|
|||||||
Последнее изменение этой страницы: 2017-02-08; просмотров: 1183; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.221.40.170 (0.007 с.) |