Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
И 2 не подходят для оптимизации.Содержание книги Поиск на нашем сайте
; без ограничения общности можно положить что матрица q – симметричная
Разложим функцию в ряд Тейлора (должно быть 3 члена). Чтобы найти линейный член квадратичной функции, надо взять grad.
; ; С = 0
Найдем матрицу Гесса (матрица вторых частных производных)
элемент матрицы Гесса является элементом функции Q. (все частные производные высших порядков равны 0). Функция экстремальна, если grad в данной точке равен 0, следовательно условие экстремальности - система.
Необходимое условие оптимальности: Если решение данной системы существует и оно единственное (совместная система). Если решение данной системы существует и оно единственное, т.е. если Q знакоопределена, то существует решение и оно единственное.
Если имеем квадратичную функцию и матрица положительно определена, то линии уровня – эллипсы. Собственные значения определяют оси эллипсов.
Чтобы определить координаты точки локального минимума, нужно решить систему .
Пусть f(x) – произвольная функция и надо найти точку локального минимума. Разложим функцию в ряд Тейлора в окрестности точки.
Пусть функция не квадратичная, эллипсы примерно отражают кривизну линий уровня и находятся в окрестности точки . В окрестности точки находим приближение и заменяем эту функцию квадратичной функцией, которая получается из разложения в ряд Тейлора. Далее решаем задачу минимизации. Находим точку минимума и рассматриваем эту точку как следующее приближение и т.д. Для нахождения точки минимума квадратичной функции (зависит от )необходимо решить систему: Окончательно следующее приближение .
- формула Ньютона (обобщение формулы минимизации одной переменной)
Выполнение метода останавливается когда , т.е. когда очень мало. Для получения практической точности достаточно выполнить 4 итерации метода Ньютона. Если f – хороша, то метод Ньютона подходит, если f – квадратичная функция, то метод Ньютона приводит к минимальной точке за 1 шаг, из любой точки.
Недостатки:
Все формулы безусловной минимизации можно записать в общую схему:
Допустим, требуется f(x)àmin; - начальное приближение; - текущее приближение
а) выбор направления ; б) движение вдоль выбранного направления
|
|||||||||
Последнее изменение этой страницы: 2017-02-07; просмотров: 105; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.38.176 (0.005 с.) |