Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Методы одномерной оптимизации.Содержание книги Поиск на нашем сайте
Постановка: требуется оптимизировать х (формальная постановка)
- функция одной переменной - целевая функция.
Решение: найти х, при котором принимает оптимальное значение. 2 варианта: - минимизировать – задача минимизации; - максимизировать – задача максимизации.
Рассмотрим случай минимизации
2 способа: - аналитический - численный
В аналитическом задается в виде формулы, в численном задается в виде черного ящика, на входе подается х, на выходе значение целевой функции в этой точке.
Пусть функция определена в некоторой области S (), в случае одномерной оптимизации S – интервал :
Следствие: любая точка глобального минимума является локальным минимумом, обратное не верно.
Аналитический способ нахождения локального минимума.
- дифференцируема - необходимое условие точки локального минимума.
Численные методы. Пусть функция задана на интервале , при этом существует такая точка , что на – монотонно убывает, а на – монотонно возрастает, то функция унимодальная.
а b
Если из того что следует, что , то функция называется монотонно возрастающей. Если из того что следует, что , то функция называется монотонно убывающей.
Методы одномерного поиска.
Разобьем и вычислим значение функции в каждой точке.
искомый минимум
В результате остается интервал меньшего размера, к которому применяется тот же метод, и находим еще один интервал, в конце находим интервал с заведомо нужной точкой.
Интервал неопределенности – интервал, в котором заведомо находится точка минимума. Наиболее эффективное разбиение – двумя точками на 3 равных отрезка.
1) 2)
- после выполнения n шагов сокращение исходного интервала - точность с которой надо найти решение задачи.
N=2n, где n – число шагов, N – число вычислений (мера эффективности данного решения).
Метод золотого сечения.
Точки должны быть расположены на равном расстоянии.
а b
; ; ; ; - золотое сечение.
а
- величина сокращения на каждом шаге число итераций растет как логарифм функции.
Одномерная оптимизация с использованием производных.
. Пусть целевая функция дифференцируема .
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2017-02-07; просмотров: 116; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.245.158 (0.005 с.) |