Свойств выборочных вариаций (дисперсий) и ковариаций. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Свойств выборочных вариаций (дисперсий) и ковариаций.



Для дальнейшего изложения нам понадобится установить ряд пра­вил, которые можно использовать при преобразовании выражений, со­держащих выборочные вариации и ковариации.

Пусть а — некоторая постоянная, а х, у, z — переменные, прини­мающие в i-м наблюдении значения xi,yi,zi,i=1,..., п (n — количество наблюдений). Тогда а можно рассматривать как переменную, значение которой в i-м наблюдении равно а, и

 

 

откуда следует свойство:

1. Cov(x, a) = 0.

Далее, нетрудно видеть, что имеют место равенства:

2. Cov(x, у) = Cov(y, х);

3. Cov(x. x) = Var(x).

Кроме того,

 

,

 

откуда следует свойство:

 

4. Cov(ax. у) = aCov(x, у).

 

5. Cov(x. у + z) =Cov(x, у) + Cov(x,z).

На основе вышеназванных свойств находим, что

6. Var(a)=0,

т. е. постоянная не обладает изменчивостью и

7. Var(ax)=a2Var(x).

Таким образом, при изменении единицы измерения переменной в раз, во столько же раз преобразуется и величина стандартного отклоне­ния этой переменной (напомним, что стандартное отклонение равно квадратному корню из дисперсии).

8. Var(x+a)=Var(x)

т. е. сдвиг начала отсчета не влияет на вариацию переменной.

Далее, имеем:

Var(x+y)=Cov(x+y,x+y)= Cov(x, х) + Cov(x, у) + Cov(y, x) + Cov(x, у).

Таким образом, доказано свойство

9.Var(x+y)=Var(x)+Var(y)+2Cov(x,y),

означающее, что вариация суммы двух переменных отличается от сум­мы вариаций этих переменных на величину, которая равна удвоенному значению ковариации между названными переменными.

 

Свойства остатков

Теперь установим почти очевидные соотношения, которые следуют из условии минимума критерия наименьших квадратов. Определим величину

ŷi=a +bx,

 

оценку переменной у при оптимальных значениях коэффициентов регрессии и фиксированном значении х в i-ом наблюдении. Такую оценку называют прогнозом зависимой переменной. Тогда, очевидно, ошибка модели в i-ом наблюдении будет равна e i=yi- ŷi и из условия следует, что

;

т. е сумма квадратов ошибок оценок переменной у (остатков модели) при оптимальных параметрах регрессии а и b равна нулю.

Далее, вытекает, что

т. е., при оптимальных параметрах регрессии ошибки ортогональны на­блюдениям независимой переменной.

 

Несмещенность МНК-оценок

Статистическая оценка некоторого параметра называется несме­щенной, если ее математическое ожидание равно истинному значению этого параметра.

Для случая парной линейной регрессии это означает, что опенки а и b будут несмещенными, если

М{а} = α,

M{b}=β.

 

Применив формулу для коэффициента,а также полученное выше соотношение, составим выражение:

 

 

Далее, поскольку х — неслучайная величина, будем иметь:

 

 

и, таким образом, оценка b является несмещенной.

Несмещенность оценки а следует из цепочки равенств:

Замечание. Свойство несмещенности оценок можно доказать и при более слабой форме 4-го условия Гаусса-Маркова, когда х—случайная, но некоррелированная со случайной переменной u, величина.

 

Состоятельность оценок

Свойство состоятельности оценок заключается в том, что при неог­раниченном возрастании объема выборки, значение оценки должно стремиться (по вероятности) к истинному значению параметра, а дис­персии оценок должны уменьшаться и в пределе стремиться к нулю. Дисперсии оценок коэффициентов регрессии определяются выраже­ниями:

 

;

 

Или. используя равенство , можно записать в виде:

 

Вывод: чем больше число наблюдений n, тем меньше будут дисперсии ошибок.

 



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 440; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.62.45 (0.005 с.)