Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Переваги і недоліки багатопотоковостіСодержание книги
Поиск на нашем сайте
Назвемо проблеми, які можуть бути вирішені за допомогою потоків. ♦ Використання потоків дає змогу реалізувати різні види паралелізму і дозволяє застосуванню масштабуватися із ростом кількості процесорів. ♦ Для підтримки потоків потрібно менше ресурсів, ніж для підтримки процесів (наприклад, немає необхідності виділяти для потоків адресний простір). ♦ Для обміну даними між потоками може бути використана спільна пам'ять (адресний простір їхнього процесу). Це ефективніше, ніж застосовувати засоби міжпроцесової взаємодії. Незважаючи на перелічені переваги, використання потоків не є універсальним засобом розв'язання проблем паралелізму, і пов'язане з деякими труднощами. ♦ Розробляти і налагоджувати багатопотокові програми складніше, ніж звичайні послідовні програми; досить часто впровадження багатопотоковості призводить до зниження надійності застосувань. Організація спільного використання адресного простору декількома потоками вимагає, щоб програміст мав високу кваліфікацію. ♦ Використання потоків може спричинити зниження продуктивності застосувань. Переважно це трапляється в однопроцесорних системах (наприклад, у таких системах спроба виконати складний розрахунок паралельно декількома потоками призводить лише до зайвих витрат на перемикання між потоками, кількість виконаних корисних інструкцій залишиться тією ж самою). Переваги і недоліки використання потоків потрібно враховувати під час виконання будь-якого програмного проекту. Насамперед доцільно розглядати можливість розв'язати задачу в рамках моделі процесів. При цьому, однак, варто брати до уваги не лише поточні вимоги замовника, але й необхідність розвитку застосування, його масштабування тощо. Можливо, з урахуванням цих факторів використання потоків буде виправдане. 3.2.4. Способи реалізації моделі потоків Перш ніж розглянути основні підходи до реалізації моделі потоків, дамо означення важливих понять потоку користувача і потоку ядра. Потік користувача — це послідовність виконання команд в адресному просторі процесу. Ядро ОС не має інформації про такі потоки, вся робота з ними виконується в режимі користувача. Засоби підтримки потоків користувача надають спеціальні системні бібліотеки; вони доступні для прикладних програмістів у вигляді бібліотечних функцій. Бібліотеки підтримки потоків у наш час звичайно реалізують набір функцій, визначений стандартом РОSІХ (відповідний розділ стандарту називають POSIX.1b); тут прийнято говорити про підтримку потоків РОSІХ. Потік ядра - це послідовність виконання команд в адресному просторі ядра. Потоками ядра управляє ОС, перемикання ними можливе тільки у привілейованому режимі. Є потоки ядра, які відповідають потокам користувача, і потоки, що не мають такої відповідності.
Співвідношення між двома видами потоків визначає реалізацію моделі потоків. Є кілька варіантів такої реалізації (схем багатопотоковості); розглянемо найважливіші з них (рис. 3.1).
Схема багатопотоковості М:1 (є найранішою) реалізує багатопотоковість винятково в режимі користувача. При цьому кожен процес може містити багато потоків користувача, однак про наявність цих потоків ОС не відомо, вона працює тільки із процесами. За планування потоків і перемикання контексту відповідає бібліотека підтримки потоків. Схема вирізняється ефективністю керування потоками (для цього немає потреби переходити в режим ядра) і не потребує для реалізації зміни ядра ОС. Проте нині її практично не використовують через два суттєвих недоліки, що не відповідають ідеології багатопотоковості. ♦ Схема М:1 не дає змоги скористатися багатопроцесорними архітектурами, оскільки визначити, який саме код виконуватиметься на кожному із процесорів, може тільки ядро ОС. У результаті всі потоки одного процесу завжди виконуватимуться на одному процесорі. ♦ Оскільки системні виклики обробляються на рівні ядра ОС, блокувальний системний виклик (наприклад, виклик, який очікує введення даних користувачем) зупинятиме всі потоки процесу, а не лише той, що зробив цей виклик. Схема багатопотоковості 1:1 ставить у відповідність кожному потоку користувача один потік ядра. У цьому разі планування і перемикання контексту зачіпають лише потоки ядра, у режимі користувача ці функції не реалізовані. Оскільки ядро ОС має інформацію про потоки, ця схема вільна від недоліків попередньої (різні потоки можуть виконуватися на різних процесорах, а при зупиненні одного потоку інші продовжують роботу). Вона проста і надійна в реалізації і сьогодні є найпоширенішою. Хоча схема передбачає, що під час керування потоками треба постійно перемикатися між режимами процесора, на практиці втрата продуктивності внаслідок цього виявляється незначною. ♦ Схема багатопотоковості М:Ы. У цій схемі присутні як потоки ядра, так і потоки користувача, які відображаються на потоки ядра так, що один потік ядра може відповідати декільком потокам користувача. Число потоків ядра може бути змінене програмістом для досягнення максимальної продуктивності. Розподіл потоків користувача по потоках ядра виконується в режимі користувача, планування потоків ядра — у режимі ядра. Схема є складною в реалізації і сьогодні здає свої позиції схемі 1:1. 3.3. Стани процесів і потоків Для потоку дозволені такі стани: ♦ створення (new) — потік перебуває у процесі створення; ♦ виконання (running) — інструкції потоку виконує процесор (у конкретний момент часу на одному процесорі тільки один потік може бути в такому стані); ♦ очікування (waiting) — потік очікує деякої події (наприклад, завершення операції введення-виведення); такий стан називають також заблокованим, а потік - припиненим; ♦ готовність (ready) — потік очікує, що планувальник перемкне процесор на нього, при цьому він має всі необхідні йому ресурси, крім процесорного часу; ♦ завершення (terminated) — потік завершив виконання (якщо при цьому його ресурси не були вилучені з системи, він переходить у додатковий стан — стан зомбі).
Перехід потоків між станами очікування і готовності реалізовано на основі планування задач, або планування потоків. Під час планування потоків визначають, який з потоків треба відновити після завершення операції введення-виведення, як організувати очікування подій у системі. Для здійснення переходу потоків між станами готовності та виконання необхідне планування процесорного часу. На основі алгоритмів такого планування визначають, який з готових потоків потрібно виконувати в конкретний момент, коли потрібно перервати виконання потоку, щоб перемкнутися на інший готовий потік тощо. Планування задач і процесорного часу є темою розділу 4. Відносно систем, які реалізують модель процесів, прийнято говорити про стани процесів, а не потоків, і про планування процесів; фактично стани процесу в цьому разі однозначно відповідають станам його єдиного потоку. У багатопотокових системах також можна виділяти стани процесів. Наприклад, у багатопотоковості, реалізованій за схемою М:1, потоки змінюють свої стани в режимі користувача, а процеси — у режимі ядра. Опис процесів і потоків Як ми вже знаємо, одним із основних завдань операційної системи є розподіл ресурсів між процесами і потоками. Такими ресурсами є насамперед процесорний час (його розподіляють між потоками під час планування), засоби введення-виведення й оперативна пам'ять (їх розподіляють між процесами). Для керування розподілом ресурсів ОС повинна підтримувати структури даних, які містять інформацію, що описує процеси, потоки і ресурси. До таких структур даних належать: ♦ таблиці розподілу ресурсів: таблиці пам'яті, таблиці введення-виведення, таблиці файлів тощо; ♦ таблиці процесів і таблиці потоків, де міститься інформація про процеси і потоки, присутні у системі в конкретний момент.
3.4.1. Керуючі блоки процесів і потоків Інформацію про процеси і потоки в системі зберігають у спеціальних структурах даних, які називають керуючими блоками процесів і керуючими блоками потоків. Ці структури дуже важливі для роботи ОС, оскільки на підставі їхньої інформації система здійснює керування процесами і потоками. Керуючий блок потоку (Thread Control Block, ТСВ) відповідає активному потоку, тобто тому, який перебуває у стані готовності, очікування або виконання. Цей блок може містити таку інформацію: ♦ ідентифікаційні дані потоку (зазвичай його унікальний ідентифікатор); ♦ стан процесора потоку: користувацькі регістри процесора, лічильник інструкцій, покажчик на стек; ♦ інформацію для планування потоків. Таблиця потоків — це зв'язний список або масив керуючих блоків потоку. Вона розташована в захищеній області пам'яті ОС. Керуючий блок процесу (Process Control Block, РСВ) відповідає процесу, що присутній у системі. Такий блок може містити: ♦ ідентифікаційні дані процесу (унікальний ідентифікатор, інформацію про інші процеси, пов'язані з даним); ♦ інформацію про потоки, які виконуються в адресному просторі процесу (наприклад, покажчики на їхні керуючі блоки); ♦ інформацію, на основі якої можна визначити права процесу на використання різних ресурсів (наприклад, ідентифікатор користувача, який створив процес); ♦ інформацію з розподілу адресного простору процесу; ♦ інформацію про ресурси введення-виведення та файли, які використовує процес. Зазначимо, що для систем, у яких реалізована модель процесів, у керуючому блоці процесу зберігають не посилання на керуючі блоки його потоків, а інформацію, необхідну безпосередньо для його виконання (лічильник інструкцій, дані для планування тощо). Таблицю процесів організовують аналогічно до таблиці потоків. Як елементи в ній зберігатимуться керуючі блоки процесів.
3.4.2. Образи процесу і потоку Сукупність інформації, що відображає процес у пам'яті, називають образом процесу (process image), а всю інформацію про потік - образом потоку (thread image). До образу процесу належать: ♦ керуючий блок процесу; ♦ програмний код користувача; ♦ дані користувача (глобальні дані програми, загальні для всіх потоків); ♦ інформація образів потоків процесу. Програмний код користувача, дані користувача та інформація про потоки завантажуються в адресний простір процесу. Образ процесу звичайно не є безперервною ділянкою пам'яті, його частини можуть вивантажуватися на диск. Ці питання будуть розглянуті в розділі 9. До образу потоку належать: ♦ керуючий блок потоку; ♦ стек ядра (стек потоку, який використовується під час виконання коду потоку в режимі ядра); ♦ стек користувача (стек потоку, доступний у користувацькому режимі). Схема розташування в пам'яті образів процесу і його потоків зображена на рис. 3.3. Усі потоки конкретного процесу можуть користуватися загальною інформацією його образу.
3.5. Перемикання контексту й обробка переривань
|
|||||
Последнее изменение этой страницы: 2017-02-06; просмотров: 683; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.15.92.58 (0.007 с.) |