Сутнiсть та значення моделi Вольтера-Лоткi «хижак-жертва». 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Сутнiсть та значення моделi Вольтера-Лоткi «хижак-жертва».



Первое понимание, что собственные ритмы возможны в богатой энергией системе за счет специфики взаимодействия ее компонентов пришло после появления простейших нелинейных моделей взаимодействия - химических веществ в уравнениях Лотки, и взаимодействия видов - в моделях Вольтерра [1,3].

Уравнение Лотки рассмотрено им в 1926 г. в книге и описывает систему следующих химических реакций

В некотором объеме находится в избытке вещество А. Молекулы А с некоторой постоянной скоростью превращаются в молекулы вещества X (реакция нулевого порядка). Вещество X может превращаться в вещество Y, причем скорость этой реакции тем больше, чем больше конценрация вещества Y - реакция второго порядка. В схеме это отражено обратной стрелкой над символом y. Молекулы Y в свою очередь необратимо распадаются, в результате образуется вещество B (реакция первого порядка).

Запишем систему уравнений, описывающих реакцию:

(9)

Здесь X, Y, B - концентрации химических компонентов. Первые два уравнения этой системы не зависят от B, поэтому их можно рассматривать отдельно. При определенных значениях параметров в системе возможны затухающие колебания.

Базовой моделью незатухающих колебаний служит классическое уравнение Вольтерра, описывающее взаимодействие видов типа хищник-жертва. Как и в моделях конкуренции (8), взаимодействие видов описывается в соответствии с принципами химической кинетики: скорость убыли количества жертв (x) и скорость прибыли количества хищников (y) считается пропорциональными их произведению

(10)

Рис.6. Модель хищник-жертва Вольтерра, описывающая незатухающие колебания численности. А. Фазовый портрет. Б. Зависимость численности жертвы и хищника от времени.

На рис. 6 представлены фазовый портрет системы, по осям которого отложены численности жертв и хищников - (а) и кинетика численности обоих видов - зависимость численности от времени-(б). Видно, что численности хищников и жертв колеблются в противофазе.

Модель Вольтерра имеет один существенный недостаток. Параметры колебаний ее переменных меняются при флуктуациях параметров и переменных системы. Такую систему называют негрубой.

Этот недостаток устранен в более реалистичных моделях. Модификация модели Вольтерра с учетом ограниченности субстрата в форме Моно (уравнение 5) и учет самоограничения численности (как в уравнении 2) приводит к модели, подробно изученной А.Д.Базыкиным в книге "Биофизика взаимодействующих популяций" (1985).

, (11)

Система (11 представляет собой некий кентавр, составленный из базовых уравнений (1, 2, 5, 10)и объединяющий их свойства. Действительно, при малых численностях и в отсутствие хищника жертва (x) будет размножаться по экспоненциальному закону(1). Хищник (y) в отсутствие жертв будут вымирать также по экспоненте. Если особей того или иного вида много, в соответствии с базовой моделью (2) срабатывает системный ферхюльстовский фактор (член -Ex2 в первом уравнении, и -My2 - во втором). Интенсивность взаимодействия видов считается пропорциональной произведению их численностей (как в модели (10)) и описывается в форме Моно (модель 5). Здесь роль субстрата играет вид-жертва, а роль микроорганизмов - вид-хищник. Таким образом, модель (11) брала в себя свойства базовых моделей (1), (2), (5), (10).

Но модель (11) представляет собой не просто сумму свойств этих моделей. С ее помощью можно описать и гораздо более сложные типы поведения взаимодействующих видов: наличие двух устойчивых стационарных состояний, затухающие колебания численностей и проч. При некоторых значениях параметров система становится автоколебательной. В ней с течением времени устанавливается режим, при котором переменные изменяются периодически с постоянным периодом и амплитудой независимо от начальных условий.

 



Поделиться:


Последнее изменение этой страницы: 2017-02-06; просмотров: 176; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.236.83.14 (0.007 с.)