Энтропия. Второй закон термодинамики (формулировка и математическое выражение). Обратимые и необратимые в термодинамическом смысле процессы. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Энтропия. Второй закон термодинамики (формулировка и математическое выражение). Обратимые и необратимые в термодинамическом смысле процессы.



Второй закон термодинамики (второе начало термодинамики): Самопроизвольно протекают процессы, приводящие к увеличению общей энтропии системы и окружающей среды

ΔSсист + ΔSсреды ≥ 0 или ΔS ≥ 0

Для химической реакции изменение энтропии прод - исх

Энтропия (S) -мера энергетического беспорядка в системе, мера хаоса, мера той энергии, которая рассеивается в виде тепла и не превращается в работу.

Изменение энтропии ∆S наиболее просто определяется для обратимых изотермических процессов, оно равняется тепловому эффекту процесса, делённому на абсолютную температуру. Энтропия – экстенсивная функция. Энтропия системы равна сумме энтропий составных частей. Её изменение зависит только от начального и конечного состояния системы и не зависит от пути перехода.

Энтропию относят к 1 молю вещества в стандартных условиях S°298; измеряют ее в энтропийных единицах (э.е.): 1 Дж/мoль*К = 1 э.е.

Больцман постулировал, что энтропия связана с термодинамической вероятностью логарифмической зависимостью

 

S = k ln W уравнение Больцмана

k – константа Больцмана: k = 1,38∙10-23 Дж/градус;

W – число микросостояний, с помощью которых можно реализовать данное макросостояние:

Р – вероятность того, что система находится именно в этом микросостоянии.

Термодинамически обратимый процесс – процесс, протекающий в прямом и в обратном направлении без изменений в системе и в окружающей среде, т.е. при переходе из начального состояния в конечное все промежуточные состояния являются равновесными.

При наличии неравновесных промежуточных состояний процесс считают термодинамически необратимым.

Энергия Гиббса. Прогнозирование направления самопроизвольно протекающих процессов в изолированной и закрытой системах; роль энтальпийного и энтропийного факторов. Термодинамические условия равновесия.

Энергия Гиббса – функция состояния, являющаяся критерием самопроизвольности процессов в открытых и закрытых системах.

G=H–TS

H- энтальпия,

Т- температура,

S- энтропия.

Используя энергию Гиббса, второй закон термодинамики можно выразить так:

При постоянстве температуры и давления в системе самопроизвольно протекают только процессы, ведущие к уменьшению энергии Гиббса. В состоянии равновесия энергия Гиббса равна нулю ∆G ≤0 (р, Т=const)

При ∆G<0 реакция самопроизвольно протекает в прямом направлении;

∆G>0 в обратном направлении

∆G=0 реакция находится в состоянии равновесия.

Изменение ЭГ определяется формулой: ΔG=ΔH–TΔS Стандартная ЭГ определяется формулой:

где

 

Критериями направления самопроизвольного протекания необратимых процессов являются неравенства ΔG< 0 (для закрытых систем),ΔS> 0 (для изолированных систем). Самопроизвольное течение реакций в закрытых системах контролируется как энтальпийным (ΔrH), так и энтропийным (ΔrS) фактором. Для реакций, у которых ΔrH< 0 и ΔrS> 0, энергия Гиббса всегда будет убывать, т.е. ΔrG< 0, и такие реакции могут протекать самопроизвольно при любых температурах

В изолированных системах энтропия максимально возможное для данной системы значение Smax; в состоянии равновесия ΔS= 0.



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 404; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.163.58 (0.006 с.)