Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Унарная операция переименованияСодержание книги
Поиск на нашем сайте
И последняя унарная операция, которую мы рассмотрим, – это операция переименования атрибутов. Если говорить об отношении как о таблице, то операция переименования нужна для того, чтобы поменять названия всех или некоторых столбцов. Оператор переименования выглядит следующим образом: ρ<φ >, здесь φ – функция переименования. Эта функция устанавливает взаимно‑однозначное соответствие между именами атрибутов схем S и Ŝ, где соответственно S – схема исходного отношения, а Ŝ – схема отношения с переименованными атрибутами. Таким образом, оператор ρ < φ> в применении к отношению r (S) дает новое отношение со схемой Ŝ, состоящее из кортежей исходного отношения только с переименованными атрибутами. Запишем операцию переименования атрибутов в терминах систем управления базами данных:
ρ < φ > r (S) ≡ ρ < φ > r = { ρ < φ > t (S)| t ∈ r };
Приведем пример использования этой операции: Рассмотрим уже знакомое нам отношение Сессия, со схемой:
S: Сессия (№ зачетной книжки, Фамилия, Предмет, Оценка);
Введем новую схему отношения Ŝ, с другими именами атрибутов, которые мы бы хотели видеть вместо имеющихся:
Ŝ: (№ ЗК, Фамилия, Предмет, Балл);
Например, заказчик базы данных захотел в вашем готовом отношении видеть другие названия. Чтобы воплотить в жизнь этот заказ, необходимо спроектировать следующую функцию переименования:
φ: (№ зачетной книжки, Фамилия, Предмет, Оценка) → (№ ЗК, Фамилия, Предмет, Балл);
Фактически, требуется поменять имя только у двух атрибутов, поэтому законно будет записать следующую функцию переименования вместо имеющейся:
φ: (№ зачетной книжки, Оценка) → (№ ЗК, Балл);
Далее, пусть дан также уже знакомый нам кортеж принадлежащий отношению Сессия:
t 0(S) ∈ r (S): {(№ зачетной книжки: 100), (Фамилия: ‘Иванов’), (Предмет: ‘Базы данных’), (Оценка: 5)};
Применим оператор переименования к этому кортежу:
ρ<φ> t 0(S): {(№ ЗК: 100), (Фамилия: ‘Иванов’), (Предмет: ‘Базы данных’), (Балл: 5)};
Итак, это один из кортежей нашего отношения, у которого переименовали атрибуты. В табличных терминах отношение
ρ < № зачетной книжки, Оценка → «№ ЗК, Балл > Сессия –
это новая таблица, полученная из таблицы отношения «Сессия», переименованием указанных атрибутов.
Свойства унарных операций
У унарных операций, как и у любых других, есть определенные свойства. Рассмотрим наиболее важные из них. Первым свойством унарных операций выборки, проекции и переименования является свойство, характеризующее соотношение мощностей отношений. (Напомним, что мощность – это количество кортежей в том или ином отношении.) Понятно, что здесь рассматривается соответственно отношение исходное и отношение, полученное в результате применения той или иной операции. Заметим, что все свойства унарных операций следуют непосредственно из их определений, поэтому их можно легко объяснить и даже при желании вывести самостоятельно. Итак: 1) соотношение мощностей: а) для операции выборки: | σ < P > r |≤ | r |; б) для операции проекции: | r [ S' ] | ≤ | r |; в) для операции переименования: | ρ < φ > r | = | r |; Итого, мы видим, что для двух операторов, а именно для оператора выборки и оператора проекции, мощность исходных отношений – операндов больше, чем мощность отношений, получаемых из исходных применением соответствующих операций. Это происходит потому, что при выборе, сопутствующему действию этих двух операций выборки и проекции, происходит исключение некоторых строк или столбцов, не удовлетворивших условиям выбора. В том случае, когда условиям удовлетворяют все строки или столбцы, уменьшения мощности (т. е. количества кортежей) не происходит, поэтому в формулах неравенство нестрогое. В случае же операции переименования, мощность отношения не изменяется, за счет того, что при смене имен никакие кортежи из отношения не исключаются; 2) свойство идемпотентности: а) для операции выборки: σ < P > σ < P > r = σ < P >; б) для операции проекции: r [ S’ ] [ S’ ] = r [ S' ]; в) для операции переименования в общем случае свойство идемпотентности неприменимо. Это свойство означает, что двойное последовательное применение одного и того же оператора к какому‑либо отношению равносильно его однократному применению. Для операции переименования атрибутов отношения, вообще говоря, это свойство может быть применено, но обязательно со специальными оговорками и условиями. Свойство идемпотентности очень часто используется для упрощения вида выражения и приведения его к более экономичному, актуальному виду. И последнее свойство, которое мы рассмотрим, – это свойство монотонности. Интересно заметить, что при любых условиях все три оператора монотонны; 3) свойство монотонности: а) для операции выборки: r 1 ⊆ r 2 ⇒ σ < P > r 1 ⇒ σ < P > r 2; б) для операции проекции: r 1 ⊆ r 2 ⇒ r 1[ S' ] ⊆ r 2 [ S' ]; в) для операции переименования: r 1 ⊆ r 2 ⇒ ρ < φ > r 1 ⊆ ρ < φ > r 2; Понятие монотонности в реляционной алгебре аналогично этому же понятию из алгебры обычной, общей. Поясним: если изначально отношения r 1 и r 2 были связаны между собой таким образом, что r ⊆ r 2, то и после применения любого их трех операторов выборки, проекции или переименования это соотношение сохранится.
|
||||
Последнее изменение этой страницы: 2017-01-27; просмотров: 410; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.119.143 (0.006 с.) |