Раздел 1. Важнейшие этапы развития вычислительной техники до появления компьютеров. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Раздел 1. Важнейшие этапы развития вычислительной техники до появления компьютеров.



Раздел 1. Важнейшие этапы развития вычислительной техники до появления компьютеров.

Лекция №1 Предшественники компьютеров.

Вопросы:

Введение. Ручной этап развития вычислительной техники.

Механические, автоматические вычислительные устройства.

Д.Буль. Основы алгебры логики.

. Электромеханические вычислительные устройства.

Раздел 2. Поколения компьютеров.

Лекция №2 Первое поколение компьютеров.

Вопросы:

Хронология поколений компьютеров.

Первое поколение компьютеров, вакуумно-ламповая технология.

Лекция №3 Второе поколение компьютеров, транзисторная технология.

Создание транзисторов.

Компьютеры на базе транзисторов.

Лекция №4 Третье поколение компьютеров.

Вопросы:

Создание интегральных схем.

Третье поколение компьютеров.

 

Лекция №5Четвертое поколение компьютеров.

Вопросы:

БИС, история создания процессора.

Четвертое поколение ЭВМ.

Лекция № 6 Пятое поколение ЭВМ. Персональные компьютеры.

Вопросы:

Персональные компьютеры.

Пятое поколение ЭВМ.

Лекция №7 Искусственный интеллект.

Вопросы:

Предпосылки, подходы и направления развития искусственного интеллекта.

Современный искусственный интеллект, связь с другими науками.

Лекция №8 Нейрокомпьютерные системы.

Вопросы:

Базовые идеи нейронных сетей.

Нейрокомпьютер.

Раздел 3. История развития отечественной вычислительной техники.

Лекция №9 История развития Отечественного компьютеростроения.

Вопросы:

Рождение советской вычислительной техники.

Второе поколение советских ЭВМ.

Исторические факты.

Раздел 1. Важнейшие этапы развития вычислительной техники до появления компьютеров.

Лекция №1 Предшественники компьютеров.

Вопросы:

Введение. Ручной этап развития вычислительной техники.

Механические, автоматические вычислительные устройства.

Д.Буль. Основы алгебры логики.

3. Электромеханические вычислительные устройства.

 

Раздел 2. Поколения компьютеров.

Лекция №2. Первое поколение компьютеров.

Вопросы:

Хронология поколений компьютеров.

Первое поколение компьютеров, вакуумно-ламповая технология.

В EDVAC программа электронным методом записывалась в специальную память на ртутных трубках (линиях задержки), а вычисления производились уже в двоичной с.с., что позволило существенно уменьшить количество ламп и других элементов электронных цепей машины.

В конце 1944 г. к проекту в качестве научного консультанта был подключен 41-летний Джон фон Нейман,к тому времени уже имевший большой авторитет в научном мире как математик, внесший значительный вклад в квантовую механику и создавший математическую теорию игр. Интерес фон Неймана к компьютерам частично связан с его непосредственным участием в Манхэттенском проекте по созданию атомной бомбы, где он математически обосновал осуществимость взрывного способа детонации атомного заряда критической массы, а также работами по созданию водородной бомбы, требующими весьма сложных расчетов. Творчески переработав и обобщив материалы по разработке проекта, фон Нейман в июне 1945 г. готовит итоговый 101-страничный научный отчет, который содержал превосходное описание как самой машины, так и ее логических возможностей. Более того, фон Нейман в докладе на основе анализа проектных решений,а также идей А. Тьюринга по формальному универсальному вычислителю (впоследствии названному машиной Тьюринга) впервые представил логическую организацию компьютера безотносительно от его элементной базы, что позволило заложить основы проектирования ЭВМ.

В докладе выделено и детально описаны четыре базовых компоненты универсального компьютера и принцип его функционирования архитектура фон Неймана:

1. центральное арифметико-логическое устройство (АЛУ);

2. центральное устройство управления (УУ), ответственное за функционирование всех основных компонент компьютера;

3. запоминающее устройство (ЗУ);

4. система ввода и вывода информации.

Катод

По способу подогрева катоды подразделяются на катоды прямого и косвенного накала.

Анод

Анод электронной лампы

Положительный электрод. Выполняется в форме пластины, чаще коробочки имеющей форму цилиндра или параллелепипеда. Изготавливается обычно из никеля или молибдена, иногда из тантала и графита.

Сетка

Между катодом и анодом располагаются сетки, которые служат для изменения потока электронов и устранения различных вредных явлений, возникающих при движении электронов от катода к аноду.

Сетка может представлять собой решетку из тонкой проволоки или (чаще) проволочную спираль, навитую на несколько поддерживающих стоек (траверс). В стержневых лампах роль сеток выполняет система из нескольких тонких стержней, параллельных катоду и аноду, и физика их работы иная, чем в традиционной конструкции.

Создание транзисторов.

Создание транзисторов.

Элементной базой второго поколения стали полупроводники.

Диод – пример самого простого полупроводника. Его принцип заключается в свойствах между металлом и полупроводником. Они применяются в аппаратуре, которая служит для преобразования электрических колебаний. Они выпрямляют ток и поэтому применяться в стабилизаторах. Во втором поколении машин диоды стали активно использоваться. На их базе строятся схемы дешифраторов и пассивно запоминающих устройств.

Транзисторы пришли на смену не надежным электронно-вакуумным лампам. Транзисторы значительно уменьшили компьютеры в размере и стоимости. И не удивительно. Один транзистор способен заменить несколько десятков электронных ламп. При этом тепловыделение значительно уменьшилось и потребление электроэнергии тоже, а скорость работы стала выше.

Если сравнивать машины первого и второго поколения, то на примере это выглядело так. Марк-1 это компьютер первого поколения, занимавший огромный зал. Его высота 2,5м и длина 17м и при этом он стоил 500 тыс. долларов. PDP-8 – ЭВМ второго поколения. Размером с холодильник, и при этом он стоил всего 20 тыс. долларов.

Похожими свойствами, как у полупроводника есть и у электронной лампы. Когда нагрет катод, возникает эмиссия и ток течет в одном направлении. От катода (-) к аноду (+) который положительно заряжен. В обратном направлении напряжения нет. Отсюда и возникла идея вместо электронных ламп использовать полупроводники. Это значительно сэкономит электроэнергию, затраты на охлаждение и сделает компьютеры более надежными.

 

Транзистор (от англ. transfer – переносить и resistor – сопротивление) - трёхэлектродный полупроводниковый электронный прибор, в котором ток в цепи двух электродов управляется третьим. Действие транзистора можно сравнить с действием плотины, которая, перегораживая реку (постоянный источник), создает перепад уровней воды (Рис.1). Затрачивая очень небольшую энергию на вертикальное перемещение затвора, мы можем управлять потоком воды огромной мощности, т.е. энергией мощного постоянного источника.

Первый действующий транзистор был создан группой ученых из США лаборатории Bell Labs (У. Шокли, Дж. Бардин и У. Браттейн) в 1947 23 декабря. С тех пор именно этот день считается днем открытия транзистора, но лишь в 1956 году его разработчикам была присуждена Нобелевской премией по физике «за исследования полупроводников и открытие транзисторного эффекта». Интересно, что Дж. Бардин вскоре был удостоен Нобелевской премии во второй раз за создание теории сверхпроводимости. Следует отметить, что параллельно с США к созданию транзисторов в то время вплотную приблизились очень многие страны, поэтому с полной уверенностью можно говорить, что «транзистор – дитя многих родителей».

В структуре любого транзистора есть три вывода – это база (затвор), эмиттер и коллектор. Управление током в выходной цепи осуществляется либо за счет изменения входного тока, либо входного напряжения. При этом даже небольшое варьирование входных величин может приводить к существенному изменению выходного напряжения и тока. Принцип работы транзистора во многом похож на принцип действия такого известного всем устройства, как рупор. Достаточно произнести что-нибудь перед его узким отверстием, направив широкое в сторону другого человека, стоящего в нескольких десятках метров, и голос, усиленный рупором, будет хорошо слышен вдалеке. Вот так и в случае транзистора.

Если пропустить через участок “база – эмиттер” слабый ток, он будет усилен транзистором в десятки и даже сотни раз, а усиленный ток потечет через участок “коллектор – эмиттер”. Это явление связанно с тем, что внешние электрические поля и токи могут изменять плотность носителей заряда в полупроводнике и оказывать существенное влияние на его электропроводность.

Усиливающая способность транзисторов используется в аналоговой технике, например, в аналоговом телевидении и радио. Другим важнейшим применением является цифровая техника (память, процессоры, компьютеры, цифровая связь и т.п.) – транзисторы заменили вакуумные лампы в большинстве электронных устройств, совершив революцию в создании интегральных схем и компьютеров. В настоящий момент вся современная цифровая техника основана на так называемых МОПТ – транзисторах, изготовленных на основе металл – оксид – полупроводниковых слоев. При этом транзистор может работать как единичный (дискретный) прибор, так и являться элементом интегральной схемы.

Последние изготавливаются в рамках планарной интегральной технологии на одном кремниевом кристалле, который называется чипом, и составляют элементарный “кирпичик” для построения памяти, процессора и т.п.

На одном чипе, обычно размером 1-2 см2, размещаются десятки миллионов МОПТ, размеры каждого из которых не превышают 45-60 нанометров (это размер базовой части транзистора). На протяжении последних десятков лет происходит стремительная миниатюризация МОПТ (т.е. уменьшение их размеров) и увеличение степени их интеграции (т.е. количества на одном чипе), причем в ближайшие годы ожидается увеличение степени интеграции вплоть до миллиарда транзисторов на одном чипе. Уменьшение размеров МОПТ приводит также к повышению быстродействия процессоров за счет увеличения их тактовой частоты. Уже сейчас компанией Intel созданы тестовые образцы 32-нанометровых микросхем, промышленное внедрение которых намечено на 2009 год.

Полупроводниковая кремневая электроника фактически подошла к пределу своих возможностей, связанному с фундаментальными физическими ограничениями, не позволяющими в дальнейшем на её основе создать все более производительные и миниатюрные устройства. Традиционный затвор с диэлектриком из двуокиси кремния (SiO2) имеет толщину всего в несколько атомных слоев (~ 1,2 нм). Дальнейшее уменьшение его толщины приводит к значительным утечкам за счет туннельного тока (проявление квантовых эффектов) и, как следствие, к увеличению потребления энергии и тепловыделения транзистора.

Поэтому качественным выходом из сложившегося «тупика» может быть только переход к электронным приборам и схемам, построенным на совершенно иных принципах.

Так, например, создан ы транзисторы на основе прозрачных полупроводников (оксид цинка) для использования в матрицах дисплеев. Перспективным материалом, который позволит разрабатывать «гибкие дисплеи», являются полупроводниковые полимеры. Большие надежды будущего наноэлектроники возлагают на использование в качестве основного элемента транзистора полупроводниковых нанопроволок, поскольку современные технологии приготовления нанопроволок уже допускают их интеграцию со стандартной кремниевой технологией. Главным конкурентом таких полупроводниковых структур являются углеродные нанотрубки, обладающие уникальными электронными свойствами.

Однако нанотрубки страдают одним, но очень большим недостатком – в зависимости от диаметра и хиральности они могут обладать как металлическими, так и полупроводниковыми свойствами, а контролируемый синтез трубок одного типа все еще остается достаточно трудной технологической задачей. Следует отметить, что помимо разновидностей полупроводниковых транзисторов ведутся разработки объектов совершенно иной категории – «одноэлектронных транзисторов», работающих на одной единственной молекуле, а также «оптических транзисторов», как основного элемента для фотоники, в которых в качестве передающего звена выступают не электроны, а фотоны.

Оптический транзистор.

Над созданием квантового Интернета, использующего квантовые транзисторы, работают физики немецкого Института оптики имени Макса Карла Эрнста Людвига Планка во главе с Герхардом Ремпе (Gerhard Rempe). 14 мая этого года они создали систему, основанную на одном атоме, которую они называют «квантовым оптическим транзистором». В будущем такие транзисторы, возможно, станут основой компьютеров и информационных сетей.

Квантовый транзистор отличается от традиционного тем, что использует особенности квантовой физики, в которой частицы могут сообщаться через открытое пространство даже без необходимости соприкосновения. Квантовый транзистор, разработанный сотрудниками Института квантовой оптики, использует луч света, чтобы изменять свойства другого луча. Это позволяет передавать информацию из точки A в точку Б без необходимости создания каналов передачи.

Их метод опирается на сложную технику управления светом, которая называется электромагнитно вызываемая прозрачность. Один лучсветаконтролирует свойства другого, почти как в обычных транзисторах напряжение контролирует ток, проходящий через транзистор

Немецкие исследователи поместили атом рубидия в конструкцию между двумя тонкими зеркалами, находящимися на расстоянии полмиллиметра друг от друга. Затем они направили лазер на данную конструкцию, настроив его так, чтобы атом начал отражать свет. Затем направили на атом второй управляющий луч лазера с иной частотой под прямым углом к первому и настроили его так, чтобы создать условия прозрачности для прохождения первого лазера чрез конструкцию. Таким образом, система стала иметь два состояния — прозрачное и непрозрачное, по аналогии с открытым и закрытым состоянием классического транзистора.

Следует отметить, что Ученые из IBM создали самый быстрый в мире транзистор из графена. Он способен работать на тактовой частоте 26 ГГц. По мнению исследователей, в теории скорость можно увеличить как минимум еще в 40 раз. Графен – это структурный материал из одного двумерного слоя атомов углерода.

Главным преимуществом графеновых транзисторов над транзисторами из кремния является более высокая мобильность электронов – это общеизвестный факт, заставляющий ученых исследовать способы создания компонентов электрических цепей из графена и области их применения. Однако до сих пор не было известно, имеет ли влияние размер графенового транзистора на скорость его работы.

  2. Компьютеры на базе транзисторов Вместе с заменой ламп на транзисторы и усовершенствовалась элементная база хранения информации. Для хранения информации стали применять не только перфоленты и перфокарты, но и магнитную ленту. Что значительно ускорило ввод-вывод информации в машину. К началу 60-х годов стали применять накопители на магнитных дисках. Что еще значительнее ускорило обработку информации. Предшествующие ламповые компьютеры нуждались в дополнительном оборудовании. В подвалах вычислительных центров находились средства электропитания кондиционирования воздуха. С приходом второго поколения ЭВМ, потребность в них отпала. К тому же электронная – вакуумная лампа работает тогда и только тогда когда через нее проходит эмиссионный ток. Эмиссия возникает когда катод лампы нагрет до большой температуры. Машины прошлого поколения имели десятки тысяч таких ламп. На их питание нужна была не малая электрическая энергия. От 50-150 киловатт. Память на магнитных сердечниках или ферритовая память   Применялась также память на магнитных сердечниках. Представляя из себя матрицу маленьких колец которые поляризовались в двух направлениях. Что соответствовало одному биту информации. Технология отлично подходила в качестве оперативной памяти ЭВМ. Платы собирались почти вручную и были очень дорогие. А их объем составлял около 32 Кб. Память на магнитных сердечниках или ферритовая память как ее еще называли. Строилась на базе ферритов это полупроводник но обладает определенными магнитными свойствами. Производятся они из магнитного железняка с примесями магния и никеля. Достоинство их в том, что они могут быстро намагничиваться и сохранять свое намагниченное состояние. Ферриты обладают высоким сопротивлением и потери тока при их намагничивании минимальны. Из ферритов делаются сердечники. Напоминают обычные кольца. Эти кольца выстраивают рядами, образуя матрицу. Так называемую плату памяти. На каждом сердечники есть две обмотки для записи бита данных и одна для считывания. В машине UNIVAC и LARC впервые начали использоваться магнитные барабаны. IBM для своих ЭВМ IBM 1401, IBM 1410 применили магнитные диски. Однако в чем отличие второго поколения от первого? В их элементной базе. Транзисторы заменили лампы. Как следствие возросла производительность. Уменьшилась потребление электроэнергии. Уменьшилось выделение тепла. Нет необходимости в мощном кондиционировании помещений. Отечественные ЭВМ второго поколения. Среди советских компьютеров второго поколения стал Минск-22. Он мог выполнять до пяти тысяч элементарных операций в секунду. Его оперативная память была построена на ферритовых сердечниках, объемом порядка шести – восьми тысяч чисел. В нем применялись магнитные диски, которые могли хранить несколько миллионов чисел. Для вывода даных к нему возможно было подключить алфавитное - цифровое печатающее устройство. Последующая модель Минск-32 могла выполнять уже 250 тысяч операций в секунду. Объем оперативной памяти составлял 65 536 байт. PDP-8 компьютер второго поколения. Производство корпорации DEC.   С появлением компьютеров второго поколения расширилась сфера их применения. От правительственных и военных учреждений, они стали появляться в частных организациях, институтах. Начали создавать специальное системное программное обеспечение. Появились системы пакетной обработки информации. Предшественники операционных систем, которые предназначались для управления вычислительным процессом. Был разработан формальный язык управления заданиями. Совокупность нескольких заданий, в виде колоды перфокарт. Получил название пакет заданий. Данный подход жив и до сих пор. В ДОС bat – файлы, в Windows cmd – файлы. Затем и операционные системы не заставили себя долго ждать. Именно для компьютеров второго поколения начали разрабатывать операционные системы. Это значительно ускорило управление ЭВМ. Большое внимание уделяли усовершенствованию программированию машин. В 50-х стали появляться первые языки программирования: B0, Fact, MathMatic и другие. В след за ними появились языки высокого уровня Fortran, Algol. В дальнейшем стали разрабатывать библиотеки в которых хранились ранее созданные функции. Написанные один раз вызывались они повторно.
 

Элементной базой машин этого поколения были полупроводниковые приборы. Машины предназначались для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве. Появление полупроводниковых элементов в электронных схемах существенно увеличело емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. С появлением машин второго поколения значительно расширилась сфера использования электронной вычислительной техники, главным образом за счет развития программного обеспечения. Появились также специализированные машины, например ЭВМ для решения экономических задач, для управления производственными процессами, системами передачи информации и т.д.

Создание интегральных схем.

Создание интегральных схем.

.

Современные интегральные микросхемы, предназначенные для поверхностного монтажа

Советские и зарубежные цифровые микросхемы

Интегра́льная (микро) схе́ма (ИС, ИМС, м/сх, англ. integrated circuit, IC, microcircuit), чип, микрочи́п (англ. microchip, silicon chip, chip — тонкая пластинка — первоначально термин относился к пластинке кристалла микросхемы) — микроэлектронное устройство — электронная схема произвольной сложности, изготовленная на полупроводниковом кристалле (или плёнке) и помещённая в неразборный корпус, или без такового, в случае вхождения в состав микросборки [1].

На сегодняшний день большая часть микросхем изготавливается в корпусах для поверхностного монтажа.

Часто под интегральной схемой (ИС) понимают собственно кристалл или плёнку с электронной схемой, а под микросхемой (МС, чипом) — ИС, заключённую в корпус. В то же время выражение чип -компоненты означает «компоненты для поверхностного монтажа» (в отличие от компонентов для пайки в отверстия на плате).

 
7 мая 1952 года британский радиотехник Джеффри Даммер (англ. Geoffrey Dummer) впервые выдвинул идею интеграции множества стандартных электронных компонентов в монолитном кристалле полупроводника, а год спустя Харвик Джонсон подал первую в истории патентную заявку на прототип интегральной схемы (ИС). Реализация этих предложений в те годы не могла состояться из-за недостаточного развития технологий. В конце 1958 года и в первой половине 1959 года в полупроводниковой промышленности состоялся прорыв. Три человека, представлявшие три частные американские корпорации, нашли решение трех фундаментальнх проблем, препятствовавших созданию интегральных схем. 1. Джек Килби из Texas Instruments запатентовал принцип интеграции, создал первые, несовершенные, прототипы ИС и довёл их до серийного выпуска. 2. Курт Леговец из Sprague Electric Company изобрёл способ электрической изоляции компонентов, сформированых на одном кристалле полупроводника (изоляцию p-n-переходом (англ. P–n junction isolation)). 3. Роберт Нойс из Fairchild Semiconductor изобрёл способ электрического соединения компонентов ИС (металлизацию алюминием) и предложил усовершенствованный вариант изоляции компонентов на базе новейшей планарной технологии 4. Жана Эрни (англ. Jean Hoerni). 27 сентября 1960 года группа Джея Ласта (англ. Jay Last) создала на Fairchild Semiconductor первую работоспособную полупроводниковую ИС по идеям Нойса и Эрни. Texas Instruments, владевшая патентом на изобретение Килби, развязала против конкурентов патентную войну, завершившуюся в 1966 году мировым соглашением о перекрёстном лицензировании технологий. Ранние логические ИС упомянутых серий строились буквально из стандартных компонентов, размеры и конфигурации которых были заданы технологическим процессом. Схемотехники, проектировавшие логические ИС конкретного семейства, оперировали одними и теми же типовыми диодами и транзисторами. В 1961—1962 парадигму проектирования сломал ведущий разработчик Sylvania Том Лонго, впервые использовав в одной ИС различные конфигурации транзисторов в зависимости от их функций в схеме. В конце 1962 Sylvania выпустила в продажу первое семейство разработанной Лонго транзисторно-транзисторной логики (ТТЛ) — исторически первый тип интегральной логики, сумевший надолго закрепиться на рынке. В аналоговой схемотехнике прорыв подобного уровня совершил в 1964—1965 годах разработчик операционных усилителей Fairchild Боб Видлар. Первая в СССР полупроводниковая интегральная микросхема была создана на основе планарной технологии, разработанной в начале 1960 года в НИИ-35 (затем переименован в НИИ «Пульсар») коллективом, который в дальнейшем был переведён в НИИМЭ («Микрон»). Создание первой отечественной кремниевой интегральной схемы было сконцентрировано на разработке и производстве с военной приёмкой серии интегральных кремниевых схем ТС-100 (37 элементов — эквивалент схемотехнической сложности триггера, аналога американских ИС серии SN-51 фирмы Texas Instruments). Образцы-прототипы и производственные образцы кремниевых интегральных схем для воспроизводства были получены из США. Работы проводились в НИИ-35 (директор Трутко) и Фрязинским полупроводниковым заводом (директор Колмогоров) по оборонному заказу для использования в автономном высотомере системы наведения баллистической ракеты. Разработка включала шесть типовых интегральных кремниевых планарных схем серии ТС-100 и с организацией опытного производства заняла в НИИ-35 три года (с 1962 по 1965 год). Ещё два года ушло на освоение заводского производства с военной приёмкой во Фрязино (1967 год).[2]    

Уровни проектирования

  • Логический — логическая схема (логические инверторы, элементы ИЛИ-НЕ, И-НЕ и т. п.).
  • Схемо- и системотехнический уровень — схемо- и системотехническая схемы (триггеры, компараторы, шифраторы, дешифраторы, АЛУ и т. п.).
  • Электрический — принципиальная электрическая схема (транзисторы, конденсаторы, резисторы и т. п.).
  • Физический — методы реализации одного транзистора (или небольшой группы) в виде легированных зон на кристалле.
  • Топологический — топологические фотошаблоны для производства.[Прим. 1]
  • Программный уровень — позволяет программисту программировать (для ПЛИС, микроконтроллеров и микропроцессоров) разрабатываемую модель используя виртуальную схему.

В настоящее время большая часть интегральных схем проектируется при помощи специализированных САПР, которые позволяют автоматизировать и значительно ускорить производственные процессы, например, получение топологических фотошаблонов.

Классификация

Степень интеграции

В зависимости от степени интеграции применяются следующие названия интегральных схем:

  • малая интегральная схема (МИС) — до 100 элементов в кристалле,
  • средняя интегральная схема (СИС) — до 1000 элементов в кристалле,
  • большая интегральная схема (БИС) — до 10 тыс. элементов в кристалле,
  • сверхбольшая интегральная схема (СБИС) — более 10 тыс. элементов в кристалле.

Ранее использовались также теперь устаревшие названия: ультрабольшая интегральная схема (УБИС) — до 1 млрд элементов в кристалле и гигабольшая интегральная схема (ГБИС) — более 1 млрд элементов в кристалле, но в настоящее время[ когда? ] название УБИС и ГБИС практически не используется и все схемы с числом элементов, превышающим 10 тыс., относят к классу СБИС.

Технология изготовления

  • Полупроводниковая микросхема — все элементы и межэлементные соединения выполнены на одном полупроводниковом кристалле (например, кремния, германия, арсенида галлия, оксид гафния).
  • Плёночная интегральная микросхема — все элементы и межэлементные соединения выполнены в виде плёнок:
    • толстоплёночная интегральная схема;
    • тонкоплёночная интегральная схема.
  • Гибридная микросхема (также микросборка) — кроме полупроводникового кристалла содержит несколько бескорпусных диодов, транзисторов и(или) других электронных компонентов, помещённых в один корпус.
  • Смешанная микросхема — кроме полупроводникового кристалла содержит тонкоплёночные(толстоплёночные)пассивные элементы размещённые на поверхности кристалла.

Вид обрабатываемого сигнала

  • Аналоговые.
  • Цифровые.
  • Аналого-цифровые.

Аналоговые микросхемы — входные и выходные сигналы изменяются по закону непрерывной функции в диапазоне от положительного до отрицательного напряжения питания.

Цифровые микросхемы — входные и выходные сигналы могут иметь два значения: логический ноль или логическая единица, каждому из которых соответствует определённый диапазон напряжения. Например, для микросхем типа ТТЛ при напряжении питания +5 В диапазон напряжения 0…0,4 В соответствует логическому нулю, а диапазон 2,4…5 В — логической единице; а для микросхем ЭСЛ-логики при наприяжении питания −5,2 В диапазон −0,8…−1,03 В — логической единице, а −1,6…−1,75 В — логическому нулю.

Аналого-цифровые микросхемы совмещают в себе формы цифровой и аналоговой обработки сигналов.

Технологический процесс

При изготовлении микросхем используется метод фотолитографии (проекционной, контактной и др.), при этом схему формируют на подложке (обычно из кремния), полученной путём резки алмазными дисками монокристаллов кремния на тонкие пластины. Ввиду малости линейных размеров элементов микросхем, от использования видимого света, и даже ближнего ультрафиолета, при засветке давно отказались.

В качестве характеристики технологического процесса производства микросхем указывают минимальные контролируемые размеры топологии фотоповторителя (контактные окна в оксиде кремния, ширина затворов в транзисторах и т. д.) и, как следствие, размеры транзисторов (и других элементов) на кристалле. Этот параметр, однако, находится во взаимозависимости с рядом других производственных возможностей: чистотой получаемого кремния, характеристиками инжекторов, методами фотолитографии, методами вытравливания и напыления.

В 1970-х годах минимальный контролируемый размер составлял 2-8 мкм, в 1980-х был уменьшен до 0,5-2 мкм. Некоторые экспериментальные образцы фотолитографического оборудования рентгеновского диапазона обеспечивали минимальный размер 0,18 мкм.

В 1990-х годах, из-за нового витка «войны платформ», экспериментальные методы стали внедряться в производство и быстро совершенствоваться. В начале 1990-х процессоры (например, ранние Pentium и Pentium Pro) изготавливали по технологии 0,5-0,6 мкм (500—600 нм). Потом их уровень поднялся до 250—350 нм. Следующие процессоры (Pentium 2, K6-2+, Athlon) уже делали по технологии 180 нм.

В конце 1990-х фирма Texas Instruments создала новую ультрафиолетовую технологию с минимальным контролируемым размером около 80 нм. Но достичь её в массовом производстве не удавалось вплоть до недавнего времени. По состоянию на 2009 год технологии удалось обеспечить уровень производства вплоть до 90 нм.

Новые процессоры (сперва это был Core 2 Duo) делают по новой УФ-технологии 45 нм. Есть и другие микросхемы, давно достигшие и превысившие данный уровень (в частности, видеопроцессоры и флеш-память фирмы Samsung — 40 нм). Тем не менее дальнейшее развитие технологии вызывает всё больше трудностей. Обещания фирмы Intel по переходу на уровень 30 нм уже к 2006 году так и не сбылись.

По состоянию на 2009 год альянс ведущих разработчиков и производителей микросхем работает над тех. процессом 32 нм.

В 2010-м в розничной продаже уже появились процессоры, разработанные по 32-х нм тех. процессу.[3][4]

В апреле 2012 года в продажу поступили процессоры по 22-нм тех. Процессу (ими стали процессоры фирмы INTEL). Прпоц3ессоры с технологией 14 нм планируются к внедрению в 2014 году, а 10 нм – около 2018 года.

Назначение

Интегральная микросхема может обладать законченным, сколь угодно сложным, функционалом — вплоть до целого микрокомпьютера (однокристальный микрокомпьютер).

Цифровые интегральные микросхемы имеют ряд преимуществ по сравнению с аналоговыми:

  • Уменьшенное энергопотребление связано с применением в цифровой электронике импульсных электрических сигналов. При получении и преобразовании таких сигналов активные элементы электронных устройств (транзисторов) работают в «ключевом» режиме, то есть транзистор либо «открыт» — что соответствует сигналу высокого уровня (1), либо «закрыт» — (0), в первом случае на транзисторе нет падения напряжения, во втором — через него не идёт ток. В обоих случаях энергопотребление близко к 0, в отличие от аналоговых устройств, в которых большую часть времени транзисторы находятся в промежуточном (резистивном) состоянии.
  • Высокая помехоустойчивость цифровых устройств связана с большим отличием сигналов высокого (например, 2,5-5 В) и низкого (0-0,5 В) уровня. Ошибка возможна при таких помехах, когда высокий уровень воспринимается как низкий и наоборот, что маловероятно. Кроме того, в цифровых устройствах возможно применение специальных кодов, позволяющих исправлять ошибки.
  • Большое отличие сигналов высокого и низкого уровня и достаточно широкий интервал их допустимых изменений делает цифровую технику нечувствительной к неизбежному в интегральной технологии разбросу параметров элементов, избавляет от необходимости подбора и настройки цифровых устройств.

 

Корпуса микросхем

Микросхемы выпускаются в двух конструктивных вариантах — корпусном и бескорпусном.

Бескорпусная микросхема — это полупроводниковый кристалл, предназначенный для монтажа в гибридную микросхему или микросборку (возможен непосредственный монтаж на печатную плату). Корпус микросхемы — это часть конструкции микросхемы, предназначенная для защиты от внешних воздействий и для соединения с внешними электрическими цепями посредством выводов. Корпуса стандартизованы для упрощения технологического процесса изготовления изделий из разных микросхем. Число стандартных корпусов исчисляется сотнями.

В российских корпусах расстояние между выводами (шаг) измеряется в миллиметрах и наиболее часто это 2,5 мм и 1,25 мм. У импортных микросхем шаг измеряют в дюймах, используя величину 1/10 или 1/20 дюйма, что соответствует 2,54 и 1,28 мм. В корпусах до 16 выводов эта разница не значительна, а при больших размерах (20 и более выводов) соответствующие корпуса уже достаточно конструктивно несовместимы: для штыревых выводов — обламывание выводов при монтаже, для планарных — спайка соседних.

В современных импортных корпусах для поверхностного монтажа применяют и метрические размеры: 0,8 мм; 0,65 мм и другие.

Четвертое поколение ЭВМ.

Процессор

.

Intel 80486DX2 в керамическом корпусе PGA.

Intel Celeron 400 Socket 370 в пластиковом корпусе PPGA, вид снизу.



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 273; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.100.120 (0.088 с.)