Основная идея — коннекционизм 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основная идея — коннекционизм



В отличие от цифровых систем, представляющих собой комбинации процессорных и запоминающих блоков, нейропроцессоры содержат память, распределённую в связях между очень простыми процессорами, которые часто могут быть описаны как формальные нейроны или блоки из однотипных формальных нейронов. Тем самым основная нагрузка на выполнение конкретных функций процессорами ложится на архитектуру системы, детали которой в свою очередь определяются межнейронными связями. Подход, основанный на представлении как памяти данных, так и алгоритмов системой связей (и их весами), называется коннекционизмом.

Три основных преимущества нейрокомпьютеров:

1. Все алгоритмы нейроинформатики высокопараллельны, а это уже залог высокого быстродействия.

2. Нейросистемы можно легко сделать очень устойчивыми к помехам и разрушениям.

3. Устойчивые и надёжные нейросистемы могут создаваться и из ненадёжных элементов, имеющих значительный разброс параметров.

Разработчики нейрокомпьютеров стремятся объединить устойчивость, быстродействие и параллелизм АВМ — аналоговых вычислительных машин — с универсальностью современных компьютеров.

Проблема эффективного параллелизма

На роль центральной проблемы, решаемой всей нейроинформатикой и нейрокомпьютингом, А. Горбань предложил проблему эффективного параллелизма. Давно известно, что производительность компьютера возрастает намного медленнее, чем число процессоров. М. Минский сформулировал гипотезу: производительность параллельной системы растёт (примерно) пропорционально логарифму числа процессоров — это намного медленнее, чем линейная функция (Гипотеза Минского).

Для преодоления этого ограничения применяется следующий подход: для различных классов задач строятся максимально параллельные алгоритмы решения, использующие какую-либо абстрактную архитектуру (парадигму) мелкозернистого параллелизма, а для конкретных параллельных компьютеров создаются средства реализации параллельных процессов заданной абстрактной архитектуры. В результате появляется эффективный аппарат производства параллельных программ.

Нейроинформатика поставляет универсальные мелкозернистые параллельные архитектуры для решения различных классов задач. Для конкретных задач строится абстрактная нейросетевая реализация алгоритма решения, которая затем реализуется на конкретных параллельных вычислительных устройствах. Таким образом нейросети позволяют эффективно использовать параллелизм.

Современные нейрокомпьютеры

Многолетние усилия многих исследовательских групп привели к тому, что к настоящему моменту накоплено большое число различных «правил обучения» и архитектур нейронных сетей, их аппаратных реализаций и приёмов использования нейронных сетей для решения прикладных задач.

Эти интеллектуальные изобретения существуют в виде «зоопарка» нейронных сетей. Каждая сеть из зоопарка имеет свою архитектуру, правило обучения и решает конкретный набор задач. В последнее десятилетие прилагаются серьёзные усилия для стандартизации структурных элементов и превращений этого «зоопарка» в «технопарк»: каждая нейронная сеть из зоопарка реализована на идеальном универсальном нейрокомпьютере, имеющем заданную структуру.

Основные правила выделения функциональных компонентов идеального нейрокомпьютера (по Миркесу):

1. Относительная функциональная обособленность: каждый компонент имеет чёткий набор функций. Его взаимодействие с другими компонентами может быть описано в виде небольшого числа запросов.

2. Возможность взаимозамены различных реализаций любого компонента без изменения других компонентов.

Постепенно складывается рынок нейрокомпьютеров. В настоящее время широко распространены различные высокопараллельные нейро-ускорители (сопроцессоры) для различных задач. Моделей универсальных нейрокомпьютеров на рынке мало отчасти потому, что большинство из них реализованы для спецприменений. Примерами нейрокомпьютеров являются нейрокомпьютер Synapse (Siemens, Германия), процессор NeuroMatrix. Издаётся специализированный научно-технический журнал «Нейрокомпьютеры: разработка, применение» С технической точки зрения сегодняшние нейрокомпьютеры — это вычислительные системы с параллельными потоками одинаковых команд и множественным потоком данных (MSIMD-архитектура). Это одно из основных направлений развития вычислительных систем с массовым параллелизмом.

Искусственная нейронная сеть может передаваться от (нейро)компьютера к (нейро)компьютеру, так же как и компьютерная программа. Более того, на её основе могут быть созданы специализированные быстродействующие аналоговые устройства. Выделяются несколько уровней отчуждения нейронной сети от универсального (нейро)компьютера: от сети, обучающейся на универсальном устройстве и использующей богатые возможности в манипулировании задачником, алгоритмами обучения и модификации архитектуры, до полного отчуждения без возможностей обучения и модификации, только функционирование обученной сети.

Одним из способов подготовки нейронной сети для передачи является её вербализация: обученную нейронную сеть минимизируют с сохранением полезных навыков. Описание минимизированной сети компактнее и часто допускает понятную интерпретацию.



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 205; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.20.238.187 (0.005 с.)