Принципы создания больших цифровых интегральных схем 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Принципы создания больших цифровых интегральных схем



В настоящее время цифровая электроника в подавляющем большинстве базируется на больших и сверхбольших интегральных схемах. В то же время можно сказать. В основе БИС и СБИС лежит интеграция простых ИС. (Слайд 2)

Кристалл процессора "Пентиум-4" (55 млн. транзисторов, 146 мм2)

Общая характеристика БИС. Примером простых ИС являются логические вентили типа ТТЛ, КМОП, ЭСЛ и др., а также простые триггеры. Следующее место по сложности занимают СИС, которые включают сумматоры, счетчики ОЗУ и ПЗУ небольшой емкости. На основе БИС реализуются, например, арифметико-логические и управляющие устройства ЭВМ, цифровые фильтры и т. д. Современные процессоры вычислительных устройств, сложные многофункциональные устройства реализуются в СБИС. Наибольшая степень интеграции свойственна однородным структурам – ЗУ и составляет в настоящее время десятки миллиардов элементов на кристалле (гигабайты). Использование БИС приводит к резкому улучшению всех основных показателей по сравнению с аналогичным функциональным комплексом, выполненным на отдельных ИС: уменьшается количество корпусов, число сборочных и монтажных операций, количество внешних, наиболее ненадежных соединений. Все это способствует уменьшению размеров, массы, стоимости и повышению надежности. Уменьшение длины межсоединений внутри кристалла позволяет повысить быстродействие и помехоустойчивость устройства.

БИС создаются различными способами. Рассмотрим основные 3 из них.

1. Базовые матричные кристаллы. Главнейший вопрос, возникающий при проектировании БИС, СБИС, – это вопрос об их технически и экономически целесообразной сложности. Необходимо сочетание достаточной сложности (чтобы реализовать преимущества высокой степени интеграции) с достаточной универсальностью (чтобы обеспечить экономически оправданный объем выпуска). Этого компромисса можно достигнуть, обеспечивая элементарную избыточность и многофункциональность. Данный принцип положен в основу БИС на базовых матричных кристаллах (БМК). Базовый матричный кристалл – это набор топологических ячеек или простых ИС, расположенных в виде матрицы, между элементами которой отсутствуют соединения. Для получения БИС с заданными функциями отдельные элементы внутри ячеек и сами ячейки соединяются токоведущими дорожками.

В конкретной БИС, исполненной на БМК, обычно используются не все топологические ячейки, что определяется функциональными особенностями микросхемы.

Другой принцип формирования заданной структуры БИС на БМК состоит в первоначальном создании кристалла, в котором выполнены все возможные межсоединения элементов. Затем в нужных местах межсоединений делаются разрывы путем локального удаления материала межсоединения методом разрушения. (Слайд 4)

2. Программируемые логические матрицы. Существенным недостатком описанных выше БИС на БМК является то, что формирование структуры БИС может быть выполнено только в рамках логической структуры, определенной их разработчиками.

Значительно большую гибкость обеспечивают программируемые пользователем логические матрицы ПЛМ. Это специализированные БИС, внутренняя структура которых, подобно БМК, состоит из матрицы базовых логических ячеек и межсоединений, но конфигурация отдельных ячеек и связей между ними осуществляется с помощью специальной схемы, расположенной на этом же кристалле. Базовые ячейки могут реализовать логические операции И (рис. 64) или операции ИЛИ (рис. 65) над входными переменными.

ПЛМ обычно содержит матрицы обоих типов, причем если выходы Pi матрицы М1, например, соединяются с одноименными входами Pi матрицы М2, то реализуемая такой ПЛМ логическая функция будет иметь вид:

Для разных типов ПЛМ установленная конфигурация может либо сохраняться при отключении питания, подобно постоянным запоминающим устройствам, либо требуется перезагрузка при каждом новом включении. Управление перезагрузкой может выполнять сама схема ПЛМ, считывая информацию о конфигурации из внешнего ПЗУ.

Известны три способа соединения элементов ПЛМ, обеспечивающих получение на выходах заданного набора функций.

1. Соединения создаются в процессе изготовления микросхемы с помощью разрабатываемого шаблона. Такой способ широко используется при создании ПЛМ, входящих в состав серийно выпускаемых БИС, например микропроцессоров, контроллеров периферийных устройств (дисплеев, принтеров и др.).

2. Программирование ПЛМ состоит в использовании плавких перемычек для получения необходимой конфигурации соединений элементов (рис. 64, 65). Такой способ программирования потребителем широко используется для создания специализированных комбинационных схем, которые выполняют набор функций для решения определенных задач.

Оба этих способа создания ПЛМ позволяют сохранять ее конфигурацию после отключения питания.

Кристалл программируемой логической матрицы

3. Программирование также осуществляется потребителем, но вместо плавких перемычек в соединении включены МДП-транзисторы. В закрытом состоянии они разрывают соответствующие соединения, в открытом – замыкают. При этом используются специальные МНОП-структуры, в которых проводящий канал индуцируется под действием заряда, накапливаемого на границе раздела двух диэлектриков под затвором транзистора или МОП-транзисторы с изолированным (“плавающим”) затвором.

Комбинация матриц М1 и М2 образует двухуровневую ПЛМ (рис. 66).

Рис.66. Условное обозначение двухуровневой ПЛМ (S, t, g),

где S – число входов,
t – число выходов,
g – число промежуточных шин

Интегральные схемы можно классифицировать по количеству элементов размещенных на одном кристалле:

· ПИС – (Простые интегральные схемы) до 10 элементов

· МИС – (Малые интегральные схемы) до 100 элементов

· СИС – (Средние интегральные схемы) до 1 000 элементов

· БИС – (Большие интегральные схемы) до 10 000 элементов

· СБИС – (Сверхбольшие интегральные схемы) до 1 000 000 элементов

· УБИС – (Ультрабольшие интегральные схемы) до 1 000 000 000 элементов

· ГБИС – (Гигабольшие интегральные схемы) свыше 1 000 000 000 элементов

Рассмотрим подробнее что из себя представляет процессор. Что понимают под слово процессор.

Процессор

.

Intel 80486DX2 в керамическом корпусе PGA.

Intel Celeron 400 Socket 370 в пластиковом корпусе PPGA, вид снизу.

Intel Celeron 400 Socket 370 в пластиковом корпусе PPGA, вид сверху.

Intel Celeron 1100 Socket 370 в корпусе FC-PGA2, вид снизу.

Intel Celeron 1100 Socket 370 в корпусе FC-PGA2, вид сверху.

Центра́льный проце́ссор (ЦП, или центральное процессорное устройствоЦПУ; англ. central processing unit, сокращенно — CPU, дословно — центральное обрабатывающее устройство) — электронный блок либо микросхема — исполнитель машинных инструкций (кода программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера. Иногда называют микропроцессором или просто процессором.

Изначально термин центральное процессорное устройство описывал специализированный класс логических машин, предназначенных для выполнения сложных компьютерных программ. Вследствие довольно точного соответствия этого назначения функциям существовавших в то время компьютерных процессоров, он естественным образом был перенесён на сами компьютеры. Начало применения термина и его аббревиатуры по отношению к компьютерным системам было положено в 1960-е годы. Устройство, архитектура и реализация процессоров с тех пор неоднократно менялись, однако их основные исполняемые функции остались теми же, что и прежде.

Характеристики ЦПУ.

Главными характеристиками ЦПУ являются:

1. Тактовая частота

2. Производительность

3. Энергопотребление

4. Нормы литографического процесса используемого при производстве (для микропроцессоров). Фотографический процесс (фотография) – процесс избирательного правления поверхностного слоя с использованием защитной фото-маски.

5. Архитектура.

Ранние ЦП создавались в виде уникальных составных частей для уникальных, и даже единственных в своём роде, компьютерных систем. Позднее от дорогостоящего способа разработки процессоров, предназначенных для выполнения одной единственной или нескольких узкоспециализированных программ, производители компьютеров перешли к серийному изготовлению типовых классов многоцелевых процессорных устройств. Тенденция к стандартизации компьютерных комплектующих зародилась в эпоху бурного развития полупроводниковых элементов, мейнфреймов и миникомпьютеров, а с появлением интегральных схем она стала ещё более популярной. Создание микросхем позволило ещё больше увеличить сложность ЦП с одновременным уменьшением их физических размеров. Стандартизация и миниатюризация процессоров привели к глубокому проникновению основанных на них цифровых устройств в повседневную жизнь человека. Современные процессоры можно найти не только в таких высокотехнологичных устройствах, как компьютеры, но и в автомобилях, калькуляторах, мобильных телефонах и даже в детских игрушках. Чаще всего они представлены микроконтроллерами, где помимо вычислительного устройства на кристалле расположены дополнительные компоненты (память программ и данных, интерфейсы, порты ввода/вывода, таймеры и др.). Современные вычислительные возможности микроконтроллера сравнимы с процессорами персональных ЭВМ десятилетней давности, а чаще даже значительно превосходят их показатели.

 

 

2. Четвертое поколение ЭВМ.

Четвертое поколение ЭВМ 1974 – 1982

 

Новым этапом для развития ЭВМ послужили большие интегральные схемы (БИС). Элементная база компьютеров четвертого поколения это БИС. Стремительное развитие электроники, позволило разместить на одном кристалле тысячи полупроводников. Такая миниатюризация привела к появлению недорогих компьютеров. Небольшие ЭВМ могли разместиться на одном письменном столе. Именно в эти годы зародился термин «Персональный компьютер». Исчезают огромные дорогостоящие монстры. За одним таким компьютером, через терминалы, работало сразу несколько десятков пользователей. Теперь. Один человек – один компьютер. Машина стала, действительно персональной. Характеристики ЭВМ четвертого поколения 1. Мультипроцессорность 2. Языки высокого уровня 3. Компьютерные сети 4. Параллельная и последовательная обработка данных Благодаря БИС стало возможным разместить все основные элементы центрального процессора на одном кристалле. Первым микропроцессором стал Intel-4004 созданный 1971 г. Он содержал в себе более двух тысяч полупроводников, которые разместились на одной подложке. В одной интегральной схеме разместились арифметическое - логическое устройство и управляющее устройство. Одним из первых персональных компьютеров четвертого поколения считается Altair-8800. Созданный на базе микропроцессора Intel-8080. (Слайд 19). Его появление стимулировало рост периферийных устройств, компиляторов высокого уровня. Кроме изменения технической базы четвертого поколения ЭВМ, изменилось и направление создания этих машин. Они проектировались с расчетом на применение языков программирования высокого уровня, многие на аппаратном уровне были спроектированы под определенные операционные системы. Один из самых популярных компьютеров четвертого поколения это IBM System/370. (Слайд 20) Который в отличи от своего предшественника третьего поколения System/360, имел более мощную систему микрокоманд и большие возможности низкоуровневого программирования. В машинах серии System/370 программно была реализована виртуальная память. Когда часть дискового пространства отводилась для использования хранения временных данных. Тем самым эмулировалась оперативная память. У конечного пользователя создавалась впечатление, что ресурсов у машины больше чем есть на самом деле. Первый персональный компьютер представлен на слайде № 21. Технические характеристики ЭВМ четвертого поколения 1. Мультипроцессорность 2. Языки высокого уровня 3. Компьютерные сети 4. Параллельная и последовательная обработка данных 5. Применение модульности для создания программного обеспечения 6. Средняя задержка сигнала 0.7 нс/вентиль 7. Впервые модули операционной системы начали реализовывать на аппаратном уровне 8. Базовым элементом оперативной памяти стал полупроводник. Чтение запись 100-150 нс. К четвертому поколению советских ЭВМ можно отнести: ЕС-1015, ЕС-1025, ЕС-1035 (слайд 23), ЕС-1045, ЕС-1055, ЕС-1065. Персональные компьютеры, которые стали популярны в быту: Электроника-85, Искра-226, ЕС-1840, ЕС-1841, ЕС-1842 (слайд 22). К этому поколению относиться и многопроцессорный компьютер «Эльбрус». Применяемый на производстве и машиносчетных станциях. Позже его сменил «Эльбрус-2». Вычислительная мощность этой машины, для четвертого поколения, была очень велика. Он имел порядка 64 мегабайт оперативной памяти, мог выполнять до 5 миллионов операций, с плавающей точкой, в секунду. Пропускная способность шины до 120 Мб/с. ЭВМ четвертого поколения являются машинами массового применения. Они способны заменить ЭВМ предыдущего поколения во всех сферах человеческой деятельности. В управлении технологическими процессами предприятий, торговле, инженерных расчетах, справочных центров, регулировании транспортного движения, билинговых системах. Смотреть слайд 24 и 25.

 

 



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 361; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.66.13 (0.016 с.)