Аффинная хроматография, или хроматография по сродству 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Аффинная хроматография, или хроматография по сродству



Это наиболее специфичный метод выделения индивидуальных белков, основанный на избирательном взаимодействии белков с лигандами, прикреплёнными (иммобилизированными) к твёрдому носителю. В качестве лиганда может быть использован субстрат или кофермент, если выделяют какой-либо фермент, антигены для выделения антител и т.д. Через колонку, заполненную иммобилизованным лигандом, пропускают раствор, содержащий смесь белков. К ли-ганду присоединяется только белок, специфично взаимодействующий с ним; все остальные белки выходят с элюатом (рис. 1-58). Белок, адсорбированный на колонке, можно снять, промыв её раствором с изменённым значением рН или изменённой ионной силой. В некоторых случаях используют раствор детергента, разрывающий гидрофобные связи между белком и лигандом.

Аффинная хроматография отличается высокой избирательностью и помогает очистить выделяемый белок в тысячи раз.

Билет № 26

1)Стероиды, класс органических соединений, относящихся по химической природе к изопреноидам

. Стероиды — вещества животного или реже растительного происхождения, обладающие высокой биологической активностью. Стероиды образуются в природе из изопреноидных предшественников. Особенностью строения стероидов является наличие конденсированной тетрациклической системы гонана (прежнее название — стеран). Ядро гонана в стероидах может быть насыщенным или частично ненасыщенным, содержать алкильные и некоторые функциональные группы — гидроксильные, карбонильные или карбоксильную.


В регуляции обмена веществ и некоторых физиологических функций организма участвуют стероидные гормоны. Ряд синтетических гормонов, например, преднизолон, по действию на организм превосходят природные аналоги. В группу стероидов входят содержащиеся в организме человека стероидный спирт холестерин, а также желчные кислоты — соединения, имеющие в боковой цепи карбоксильную группу, например, холевая кислота.

Холестери́н (др.-греч. χολή — желчь и στερεός — твёрдый; синоним: холестерол) — органическое соединение, природный жирный (липофильный) спирт, содержащийся в клеточных мембранах всех живых организмов за исключением безъядерных (прокариоты). Нерастворим в воде, растворим в жирах и органических растворителях. Около 80 % холестерина вырабатывается самим организмом (печенью, кишечником, почками, надпочечниками, половыми железами), остальные 20 % поступают с пищей[1]. В организме находится 80 % свободного и 20 % связанного холестерина. Холестерин обеспечивает стабильность клеточных мембран в широком интервале температур. Он необходим для выработки витамина D, выработки надпочечниками различных стероидных гормонов, включаякортизол, альдостерон, женских половых гормонов эстрогенов и прогестерона, мужского полового гормона тестостерона, а по последним данным — играет важную роль в деятельности синапсов головного мозга и иммунной системы, включая защиту от рака[

К стероидам относятся, например, гормоны коркового вещества надпочечников, желчные кислоты, витамины группы D, сердечные гликозиды и другие соединения. В организме человека важное место среди стероидов занимают стерины (стеролы), т.е. стероидные спирты. Главным представителем стеринов являетсяхолестерин (холестерол).

Ввиду сложного строения и асимметрии молекулы стероиды имеют много потенциальных стереоизомеров. Каждое из шестиуглеродных колец (кольца А, В и С) стероидного ядра может принимать две различные пространственные конформации – конформацию «кресла» либо «лодки».

В природных стероидах, в том числе и в холестерине, все кольца в форме «кресла» (рис. 6.2), что является более устойчивой конформацией. В свою очередь по отношению друг к другу кольца могут находиться в цис- или транс-положениях.

Холестерин. Как отмечалось, среди стероидов выделяется группа соединений, получивших названиестеринов (стеролов). Для стеринов характерно наличие гидроксильной группы в положении 3, а также боковой цепи в положении 17. У важнейшего представителя стеринов – холестерина – все кольца находятся в транс-положении; кроме того, он имеет двойную связь между 5-м и 6-м углеродными атомами. Следовательно, холестерин является ненасыщенным спиртом:

 

2) Окисление биологическое (клеточное или тканевое дыхание) — окислительно-восстановительные реакции, протекающие в клетках организма, в результате которых сложные органические вещества окисляются при участии специфическихферментов кислородом, доставляемым кровью. Конечными продуктами биологического окисления являются вода и двуокись углерода. Освобождающаяся в процессе биологического окисления энергия частично выделяется в виде тепла, основная же ее часть идет на образование молекул сложных фосфорорганических соединений (главным образом аденозинтрифосфата — АТФ), которые являются источниками энергии, необходимой для жизнедеятельности организма.
При этом процесс окисления состоит в отнятии от окисляемого вещества (субстрата) электронов и равного им числа протонов. Субстратами биологического окисления являются продукты превращений жиров, белков и углеводов. Биологическое окисление субстратов до конечных продуктов осуществляется цепью последовательных реакций, в число промежуточных продуктов которых входят трикарбоновые кислоты — лимонная, цисаконитовая и изолимонная кислоты, поэтому вся цепь реакций носит название цикла трикарбоновых кислот, или цикла Кребса (по имени исследователя, установившего этот цикл).
Начальной реакцией цикла Кребса является конденсация щавелево-уксусной кислоты с активированной формой уксусной кислоты (ацетата), которая представляет собой соединение с коферментом ацетилирования — ацетил-КоА. В результате реакции образуется лимонная кислота, которая после четырехкратной дегидрогенизации (отщепление от молекулы 2 атомов водорода) и двукратного декарбоксилирования (отщепление молекулы CO2) образует щавелевоуксусную кислоту. Источниками ацетил-КоА, использующегося в цикле Кребса, являются уксусная кислота, пировиноградная кислота — один из продуктов гликолиза (см.), жирные кислоты (см.) и пр. Наряду с окислением ацетил-КоА в цикле Кребса могут подвергаться окислению и другие вещества, способные превращаться в промежуточные продукты этого цикла, например многие из аминокислот, образующиеся при распаде белка. Ввиду обратимости большинства реакций цикла Кребса продукты распада белков, жиров и углеводов (интермедиаты) в нем могут не только окисляться, но и получаться при его обращении. Так осуществляется связь между обменом жиров, белков и углеводов.
Протекающие в цикле Кребса реакции окисления не сопровождаются, как правило, образованием богатых энергией соединений. Исключение представляет превращение сукцинил-КоА в сукцинат (см. Янтарная кислота), которое сопровождается образованием гуанозинтрифосфата. Большая часть АТФ образуется в цепи дыхательных ферментов (см.), где перенос электронов (а на первых этапах и протонов) к кислороду сопровождается выделением энергии.
Реакции отщепления водорода осуществляются ферментами класса дегидрогеназ, причем атомы водорода (т. е. протоны + электроны) присоединяются к коферментам: никотинамидадениндинуклеотиду (НАД), никотинамидадениндинуклеотид-фосфату (НАДФ), флавинадениндинуклеотиду (ФАД) и др.
Процессы биологического окисления, связанные с циклом Кребса и цепью дыхательных ферментов, протекают преимущественно в митохондриях и локализованы на их мембранах.
Таким образом, процессы биологического окисления, связанные с циклом Кребса, имеют значение как при образовании соединений, богатых энергией, так и для осуществления связи углеводного, жирового и белкового обмена. Другие виды биологического окисления, по-видимому, имеют более узкое значение, например энергообеспечение клеток. Такова стадия гликолиза, заключающаяся в окислении ряда фосфорных соединений с одновременным восстановлением НАД и образованием АТФ или реакции пентозного цикла (т. е. окислительного превращения глюкозо-6-фосфата), сопровождающихся образованием фосфопентоз и восстановленного НАДФ. Пентозный цикл играет важную роль в тканях, характеризующихся интенсивно протекающими синтезами — нуклеиновых, жирных кислот, холестерина и пр.

  • при биологическом окислении от органической молекулы под действием соответствующего фермента отщепляются 2 атома водорода. В ряде случаев при этом между ферментами и окисленной молекулой образуется неустойчивая, богатая энергией (макроэргическая) связь. Она используется для образования макроэргического соединения — АТФ (аденозинтрифосфорной кислоты) — «конечной цели» большинства процессов биологического окисления. А 2 отнятых атома водорода оказываются в результате реакции связанными с коферментом (см. Ферменты) НАД (никотинамидадениндинуклеотидом) или с НАДФ (никотинамидадениндинуклеотидфосфатом). Дальнейшая судьба водорода может быть различной. При анаэробном (бескислородном) окислении он переносится на некоторые органические молекулы; так образуются этиловый спирт, молочная кислота, глицерин и ряд других веществ. При аэробном окислении водород через цепь переносчиков передается на кислород с образованием воды. Основная часть цепи переноса водорода расположена в мембранах митохондрий. При этом переносе из АДФ (аденозиндифосфорной кислоты) и неорганического фосфата образуется АТФ. Аэробное окисление намного эффективнее анаэробного. При анаэробном окислении глюкозы образуются лишь 2 молекулы АТФ на 1 молекулу глюкозы (см. Гликолиз). При аэробном же окислении глюкоза «сжигается» до углекислого газа и воды (СО2 и Н2О) с образованием 36 молекул АТФ (см. Дыхание). Следовательно, эволюционно более молодое аэробное окисление глюкозы в 18 раз энергетически более выгодно, чем анаэробное.

    3) КАЧЕСТВЕННЫЕ РЕАКЦИИ НА ГОРМОН

1. Качественные реакции на инсулин

а) Реакция Геллера. К 10 каплям концентрированной азотной кислоты осторожно по стенке пробирки приливают равный объем (10 капель) раствора инсулина. Пробирку наклоняют под углом 45о так, чтобы жидкости не смешивались. На границе двух жидкостей образуется белый аморфный осадок в виде небольшого кольца.

б) Биуретовая реакция. К 10 каплям инсулина добавляют 5 капель 10%-го раствора едкого натра и 1 каплю 1%-го раствора сернокислой меди. Жидкость окрашивается в фиолетовый цвет.

в) Реакция Фоля. К 5 каплям раствора инсулина приливают 5 капель реактива Фоля и кипятят. Через 1-2 минуты появляется бурый или черный осадок сульфида свинца.


^ 2. Качественные реакции на адреналин

По химической природе адреналин является производным пирокатехина. Он легко окисляется, превращаясь в неактивный хинон – адренохром (красного цвета):



Адренохром далее полимеризуется с образованием высокомоле-кулярного коричневого пигмента.

а) Реакция с хлорным железом. При взаимодействии адреналина с хлорным железом образуется зеленое комплексное соединение типа фенолята.

В пробирку вносят три капли раствора адреналина (1:1000) и 1 каплю 1%-го раствора хлорного железа. Жидкость приобретает зеленое окрашивание. При добавлении 1 капли концентрированного аммиака окраска переходит в красную вследствие образования адренохрома, а затем в коричневую

б) Диазореакция. В результате взаимодействия адреналина с диазосоединениями образуются азокрасители.

В пробирку вносят по 3 капли 1%-го раствора сульфаниловой кислоты, 5%-го раствора азотистокислого натрия, 5 капель раствора адреналина (1:1000) и 3 капли 10%-го раствора углекислого натрия. Жидкость окрашивается в красный цвет.


^ 3. Реакция на фолликулин

Фолликулин (эстрон), половой гормон стероидной структуры, является производным углеводорода эстрана:


а) Реакция с концентрированной серной кислотой. При взаимодей-ствии фолликулина с концентрированной серной кислотой образуется эфирное соединение соломенно-желтого цвета (фолликулинсульфат):



В пробирку вносят 3-5 капель масляного раствора фолликулина и 2 капли концентрированной серной кислоты. Жидкость окрашивается в соломенно-желтый цвет.


^ 4. Определение 17-кетостероидов в моче

17-кетостероиды являются конечным продуктом обмена гормонов коры надпочечников половых гормонов (тестостерона и эстрадиола). При 17-м углеродном атоме циклопентанпергидрофенантренового ядра они имеют кетогруппу.

^ Принцип метода. Нормальное содержание 17-кетостероидов в суточной моче составляет 10-16 мг у мужчин и 6-13 мг у женщин. Качественная реакция на 17-кетостероиды проводится с м -динитро-бензолом, при этом образуется продукт конденсации вишнево-красного цвета.

^ Ход работы. В пробирку вносят 5 капель мочи, 5 капель 30%-го раствора едкого натра, 5 капель 2%-го раствора м -динитробензола в этиловом спирте и перемешивают. Через 2-3 мин появляется вишнево-красное окрашивание, характерное для 17-кетостероидов.


^ 5. Реакция на тироксин

При щелочном гидролизе тироксина с KOH образуется иодистый калий. Его можно окислить в молекулярный иод иодатом калия в кислой среде. Иод дает синее окрашивание с крахмалом:


5KI + KIO3 3I®¾+ 6HCl 2 + 6KCl + 3H2O,

I2 синее окрашивание.®¾+ крахмал


^ Ход работы. Таблетированный тиреоидин (5 таблеток) растирают в ступке. Порошок переносят в колбу, добавляют 5 мл 10%-го раствора KHCO3 и 5 мл дистиллированной воды. Смесь кипятят в течение 10-15 минут.

24 капли охлажденного гидролизата переносят в пробирку и добавляют по каплям 10%-й раствор серной кислоты до кислой реакции (на лакмус). После подкисления добавляют 3 капли 1%-го раствора крахмала и 5-10 капель 2%-го раствора иодата калия (не следует добавлять избыток). Выделившийся иод дает синее окрашивание с крахмалом.

 

Билет № 28



Поделиться:


Последнее изменение этой страницы: 2017-01-24; просмотров: 556; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.154.208 (0.016 с.)