Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Схема работы центнрального процессораСодержание книги
Поиск на нашем сайте
Подмножество кода программы, наиболее «активно» исполняемое в данный отрезок времени, размещено в кэше инструкций (I-кэше). В зависимости от организации процессора инструкции в этом кэше могут храниться в исходном неизменённом виде, либо в частично «предекодированном» виде, либо в полностью «декодированном» виде (то есть в виде готовых МОПов). В случае отсутствия в данном кэше нужных инструкций (исходных либо преобразованных) они считываются из кэша 2-го уровня (L2-кэша), при необходимости подвергаясь предварительному декодированию перед помещением в I-кэш.
Рис. 2. Структура процессора и взаимодействие его элементов при прохождении машинной инструкции
Инструкции считываются из I-кэша блоками, с опережающей предвыборкой. Текущий блок инструкций отправляется сразу в два устройства – декодер инструкций и предсказатель переходов. Декодер преобразует исходные (либо частично декодированные) инструкции в микрооперации (МОПы), а предсказатель переходов определяет, есть ли в обрабатываемом блоке инструкции перехода, будут ли эти переходы совершены и по каким адресам. Если какой-либо переход предсказывается как «совершённый», то немедленно считывается блок инструкций, находящийся по предсказанному адресу. Тем временем вновь порождённая декодером группа МОПов поступает в устройство переименования регистров и выделения ресурсов (Rename/Allocate). Переименование (или переназначение) регистров – это выделение данному МОПу нового экземпляра внутреннего регистра процессора, куда будут помещены результаты выполнения этого МОПа. Все дальнейшие операции, зависящие от результатов данного МОПа, будут использовать этот регистр в качестве операнда. «Переименованный» регистр ставится в соответствие регистру, который указан в машинной инструкции (так называемому «архитектурному регистру»). Необходимость в переназначении регистров связана с тем, что архитектурных регистров обычно очень мало, и при использовании столь ограниченного числа регистров невозможно эффективно исполнить поток операций – каждая новая операция, использующая определённый регистр, была бы вынуждена ждать завершения всех предыдущих операций, которые к нему обращаются (даже если ей не нужны результаты этих операций). Наличие большого числа машинных (физических) регистров и механизма переименования позволяет обойти эту проблему. Информация о соответствии регистров хранится в специальных таблицах. В момент отставки МОПа будет произведено обратное преобразование физического регистра в архитектурный. После преобразования и подготовки регистров поступившая группа МОПов записывается в конец буфера переупорядочения (ReOrder Buffer, ROB). Эта структура является ключевой в организации внеочередного исполнения операций. В ней хранятся все МОПы и необходимые вспомогательные данные от момента завершения декодирования и выделения ресурсов до момента отставки. Таким образом, длина буфера ROB ограничивает число операций, которые одновременно могут находиться в обрабатывающей части процессора (подсистеме внеочередного исполнения) – от самой «старой», которая ещё не завершена и поэтому не может «уйти в отставку», до самой «новой», которая только что поступила из декодера. В случае переполнения буфера переупорядочения, работа декодера приостанавливается до тех пор, пока не произойдёт отставка операций в начале очереди и освобождение места для новых МОПов. Одновременно с попаданием в ROB новая группа МОПов передаётся в другую структуру данных – пункт резервирования (Reservation Station, RS), откуда МОПы будут отсылаться на исполнение непосредственно в функциональные устройства. Она представляет собой один или несколько буферов, к которым подсоединены эти функциональные устройства. В каждом такте в этих буферах производится поиск операций, которые готовы к исполнению (то есть аргументы которых уже вычислены либо вычисляются и будут готовы к моменту попадания операции в функциональное устройство) вне зависимости от порядка, в котором они записывались в буферы. Устройство, которое осуществляет этот поиск и запуск на исполнение, обычно называют планировщиком, а сами буферы – очередями планировщика. Планировщик отслеживает зависимости между операциями по данным и прогнозирует готовность операций к исполнению в устройствах. Таким образом, поиск МОПов для внеочередного исполнения всегда производится только в пределах такого буфера планировщика (единого для всех функциональных устройств, либо специфичного для каждой группы устройств), и этот буфер выглядит как «окно», в котором (при необходимости) происходит изменение порядка выполнения операций. Очередь планировщика представляет собой полностью ассоциативный буфер, с точки зрения поиска операций для исполнения. Но с точки зрения помещения новых МОПов, она ведёт себя как обычная очередь. Все МОПы, находящиеся в какой-то момент в очередях планировщика, одновременно находятся и в буфере ROB. При запуске операции на исполнение в функциональном устройстве соответствующий ей МОП удаляется из очереди планировщика, а в момент завершения операции делается пометка в соответствующем элементе буфера ROB. Когда все МОПы, предшествующие данному, успешно выполнятся и отправятся в отставку, данный МОП также сможет быть отставлен и удалён из буфера ROB. Однако может оказаться, что МОП попал в ошибочную (спекулятивную) ветвь исполнения из-за неверного предсказания перехода — в этом случае вся ветвь будет удалена из буфера переупорядочения после правильного исполнения и отставки данной инструкции перехода. Когда МОП, запущенный на исполнение в устройстве, удаляется из очереди планировщика, в ней освобождается место для приёма нового МОПа. Это означает, что эффективный размер окна для изменения порядка операций превышает длину данной очереди и ограничивается вместимостью буфера ROB. К каждой очереди планировщика подсоединено одно или несколько специализированных функциональных устройств. Число операций, которые могут быть запущены на исполнение в каждом такте, обычно заметно превышает ширину остальных трактов процессора и варьируется от 5 (P-III) до 10 (PPC970), что позволяет сглаживать пиковую нагрузку и обеспечить высокую пропускную способность при неоднородной загрузке устройств. Помимо арифметико-логических и адресных функциональных устройств, в каждом процессоре имеются также устройства загрузки и выгрузки (Load/Store), которые производят доступ к кэшам данных и к оперативной памяти. Эти устройства работают асинхронно от других, и их обычно не изображают на блок-схемах. Логически эти устройства связаны с устройствами вычисления адресов чтения/записи (AGU). Устройства загрузки и выгрузки конвейеризованы и могут одновременно обслуживать большое количество запросов. Эти устройства также осуществляют предварительную выборку из оперативной памяти (копирование в кэши тех данных, использование которых ожидается в ближайшее время). На Рис. 2 группа блоков процессора, образующих подсистему внеочередного исполнения, обведена пунктирной линией.
Рис. 3. Различные состояния, в которых могут находиться МОПы, помещённые в буфер переупорядочения.
В хронологическом порядке, каждый МОП может проходить через следующие стадии: 1. находится в очереди планировщика, но ещё не готов к исполнению; 2. готов к исполнению (все аргументы операции вычислены); 3. запущен на исполнение (диспетчеризован); 4. исполнен и ждёт отставки либо отмены спекулятивной ветви; 5. находится в процессе отставки. Кроме того, в одной микроархитектуре (процессор P-4) перед попаданием в очереди планировщика, приписанные к группам функциональных устройств, все МОПы помещаются в предварительные очереди. Эти очереди выполняют амортизирующую роль, позволяя декодеру и аллокатору осуществлять опережающую подготовку операций. Может оказаться, что буфер ROB не заполнен до конца – в этом случае в конце буфера (очереди) останется свободное место, куда могут в полном темпе поступать новые МОПы. Для этого необходимо, чтобы в очередях планировщика тоже оставалось свободное место для вновь поступающих МОПов. Длина буфера переупорядочения в современных процессорах составляет несколько десятков элементов (от 40 в процессоре P-III до 126 в процессоре P-4). В случае если в начале очереди «застрянет» МОП, находящийся в процессе исполнения (например, ожидающий конца медленной операции или прихода данных из памяти), и новые МОПы будут поступать в полном темпе, буфер ROB заполнится за 20-40 тактов (P-III — за 13 тактов). На практике средний темп выполнения операций находится на уровне 50% от предельного или несколько ниже. Взяв такой же темп поступления МОПов, получим время заполнения на уровне 40-80 тактов. Это существенно меньше, чем время ожидания данных из оперативной памяти (200-300 тактов и более). Приведённые цифры показывают, что при большом числе обращений к данным, которых нет в кэшах и для которых не осуществляется эффективная предвыборка, буфер ROB будет, как правило, переполнен, и процессор будет простаивать в ожидании прихода данных из памяти. По существу, в каждый момент времени работу будет блокировать единственный МОП, находящийся в начале очереди и ожидающий загрузки данных. Размер буфера ROB в данном случае определяет, сколько МОПов, расположенных после этого, может быть помещено в ROB и исполнено (при условии, что они не зависят от загружаемых данных) до тех пор, пока процессор не остановится.
|
||||
Последнее изменение этой страницы: 2017-01-21; просмотров: 380; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.142.113 (0.006 с.) |