Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основные методы рентгенологических исследований. Виды, характеристика.

Поиск

Методы рентгенологического исследования делятся на основные и специальные, частные. К основным методам рентгенологического исследования относятся: рентгенография, рентгеноскопия, электрорентгенография, компьютерная рентгеновская томография.

Рентгеноскопия - просвечивание органов и систем с применением рентгеновских лучей.

Рентгеноскопия - анатомо-функциональный метод, который предоставляет возможность изучения нормальных и патологических процессов и состояний организма в целом, отдельных органов и систем, а также тканей по теневой картине флюоресцирующего экрана.

Преимущества: а) общедоступность; позволяет исследовать больных в различных проекциях и позициях, в силу чего можно выбрать положение, при котором лучше выявляется патологическое тенеобразование; б) возможность изучения функционального состояния ряда внутренних органов: легких, при различных фазах дыхания; пульсацию сердца с крупными сосудами; в) тесное контактирование врача-рентгенолога с больными, что позволяет дополнить рентгенологическое исследование клиническим (пальпация под визуальным контролем, целенаправленный анамнез) и т.д.

Недостатки: большая лучевая нагрузка на больного и обслуживающий персонал; малая пропускная способность за рабочее время врача; ограниченные возможности глаза исследователя в выявлении мелких тенеобразований и тонких структур тканей и т.д.; необходимость работать в затемненном помещении, что ограничивает возможности применения рентгеновых лучей при хирургических операциях, зондировании сосудов и т.д.

Показания к рентгеноскопии ограничены.

Рентгенография - фотосъёмка посредством рентгеновых лучей. При рентгенографии снимаемый объект должен находиться в тесном соприкосновении с кассетой, заряженной плёнкой. Рентгеновы лучи, выходящие из трубки, направляются перпендикулярно на центр плёнки через середину объекта (расстояние между фокусом и кожей больного в обычных условиях работы 60 - 100 см.) Необходимым оснащением для рентгенографии являются кассеты с усиливающими экранами, отсеивающие решетки и специальная рентгеновская пленка. Кассеты делаются из светонепроницаемого материала и по величине соответствуют стандартным размерам выпускаемой рентгеновской пленки (13 x18, 18x24, 24x 30, 30x40 и 35x 35 см и др.).

Усиливающие экраны предназначены для увеличения светового эффекта рентгеновых лучей на фотопленку. Они представляют картон, который пропитывается специальным люминофором (вольфрамо-кислый кальций), обладающий флюоресцирующим свойством под влиянием рентгеновых лучей. Использование усиливающих экранов сокращает в значительной степени время экспозиции при рентгенографии.

Для отсеивания мягких лучей первичного потока, который может достигнуть пленки, а также вторичного излучения, используются специальные подвижные решетки. Обработка заснятых пленок проводится в фотолаборатории. Процесс обработки сводится к проявлению, полосканию в воде, закреплению и тщательной промывке плёнки в текучей воде с последующей сушкой. Сушка пленок проводится в сушильных шкафах, что занимает не менее 15 мин или происходит естественным путём, при этом снимок бывает готовым на следующий день. При использовании проявочных машин снимки получают сразу после исследования.

Преимущество: 1) устраняет недостатки Р-скопии; 2) документация.

Недостатки: 1) статика; 2) не отражает функционального многообразия; 3) дороговизна (серебро).

Электрорентгенография. Метод получения рентгеновского изображения на полупроводниковых пластинах. Принцип метода: при попадании лучей на высокочувствительную селеновую пластину в ней меняется электрический потенциал. Селеновая пластинка посыпается порошком графита. Отрицательно заряженные частицы порошка притягиваются к тем участкам селенового слоя, в которых сохранились положительные заряды, и не удерживаются в тех местах, которые потеряли заряд под действием рентгеновского излучения. ЭРГ позволят в 2-3 минуты перенести изображение с пластины на бумагу. На одной пластине можно произвести более 1000 снимков.

Преимущество: 1) быстрота; 2) дешевизна.

Недостаток: недостаточно высокая разрешающая способность при исследовании внутренних органов. Метод применяется в основном при исследовании костей и суставов в травмопунктах. В последнее время применение этого метода все более ограничивается.

Компьютерная рентгеновская томография.

Разработка и внедрение в клиническую практику рентгеновской компьютерной томографии (КТ) явились крупнейшим достижением науки и техники. Со времени открытия рентгеновского излучения в конце прошлого века не было в медицине более значительного сообщения, чем разработка КТ. Свидетельством этого является присуждение Нобелевской премии в 1979 г. известным физикам Cormokt (США) и Hounsfield (Англия) за создание клинического испытания КТ.

Компьютерная томография позволяет изучить положение, форму, размеры и структуру различных органов, а также их соотношение с другими органами и тканями.

Это фактически осуществление идей великого русского хирурга Н.И.Пирогова: получение в клинических условиях данных о топографии и структуре органов в поперечных срезах. Основой для разработки и создания КТ послужили различные модели математической реконструкции рентгеновского изображения объектов. Успехи, достигнутые с помощью КТ в диагностике различных заболеваний, послужили стимулом быстрого технического совершенствования аппаратов и значительного увеличения их моделей. Если первое поколение КТ имело один детектор, и время для сканирования составляло 5-10 мин, то на томограммах третьего -четвертого поколений при наличии от 512 до1100 детекторов и ЭВМ большой емкости время для получения одного среза уменьшилось до 2-5 с, что практически позволяет исследовать все органы и ткани, включая сердце и сосуды. В настоящее время применяется спиральная КТ, позволяющая проводить продольную реконструкцию изображения, исследовать быстро протекающие процессы (сократительную функцию сердца).

Компьютерная томография основана на принципе создания рентгеновского изображения органов и тканей с помощью ЭВМ. В основе рентгеновского КТ лежит регистрация X - лучей чувствительными дозиметрическими детекторами. Принцип метода заключается в том, что после прохождения лучей через тело пациента они попадают не на экран, а на чувствительные детекторы, в которых возникают электрические импульсы, передающиеся после усиления в ЭВМ, где по специальному алгоритму они реконструируются и создают изображение объекта, который из ЭВМ подаётся на телемонитор. Изображение органов и тканей на КТ, в отличие от традиционных рентгеновских снимков, получается в виде поперечных, наподобие пироговских срезов. Современные установки позволяют получить срезы толщиной от 2 до 8 мм. Рентгеновская трубка и приёмник излучения движутся вокруг тела больного. КТ обладает рядом преимуществ перед обычным рентгенологическим исследованием:

а) прежде всего высокой чувствительностью, что позволяет отдифференцировать отдельные органы и ткани друг от друга по плотности в пределах до 0,5 %; на обычных рентгенограммах этот показатель составляет 10-20%.

б) КТ позволяет получить изображение органов и патологических очагов только в плоскости исследуемого среза, что даёт чёткое изображение без наслоения лежащих выше и ниже образований;

в) КТ даёт возможность получить точную количественную информацию о размерах и плотности отдельных органов, тканей и патологических образований;

г) КТ позволяет судить не только о состоянии изучаемого органа, но и о взаимоотношении патологического процесса с окружающими органами и тканями, например, инвазию опухоли в соседние органы, наличие других патологических изменений;

д) КТ позволяет получить топограммы, т.е. продольное изображение исследуемой области наподобие рентгеновского снимка, путем смещения больного вдоль неподвижной трубки. Топограммы используются для установления протяженности патологического очага и определения количества срезов.

е) планирование лучевой терапии (составление карт облучения и расчёт доз).

Данные КТ могут быть использованы для диагностической пункции, она может с успехом применяться не только для выявления патологических изменений, но и для оценки эффективности лечения и, в частности, противоопухолевой терапии, а также определение рецидивов и сопутствующих осложнений.

Диагностика с помощью КТ основана на прямых рентгенологических признаках, т.е. определении точной локализации, формы, размеров отдельных органов и патологического очага и, что особенно важно, на показателях плотности или абсорбции. Показатель абсорбции основан на степени поглощения или ослабления пучка рентгеновского излучения при прохождении через тело человека. Каждая ткань в зависимости от плотности атомной массы по-разному поглощает излучение, поэтому в настоящее время для каждой ткани и органа в норме разработан коэффициент абсорбции (КА) по шкале Хаунсфилда. Согласно этой шкале, КА воды принимают за 0, кости, обладающие наибольшей плотностью - за +1000, воздух, обладающий наименьшей плотностью, - за -1000.

Минимальная величина опухоли или другого патологического очага, определяемого с помощью КТ, колеблется от 0,5 до 1 см при условии, что КА пораженной ткани отличается от такового здоровой на 10 - 15 ед.

 

 



Поделиться:


Последнее изменение этой страницы: 2017-01-26; просмотров: 1828; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.201.122 (0.009 с.)