Свойства ультразвукового излучения, используемые для получения ультразвукового изображения. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Свойства ультразвукового излучения, используемые для получения ультразвукового изображения.



В современных условиях все большее значение приобретает ультразвуковая диагностика. В данном случае не используется ионизирующее облучение и устраняется возможность возникновения биологических эффектов, присущих ионизирующему излучению, не вызывает каких-либо изменений у пациентов и врачей.

Получение ультразвуковых изображений внутренних органов (структур) биологических объектов основана на применении звукового поля, формируемого в средах, обладающих упругостью (газ, жидкость, твердое тело). Для исследования биологических объектов используются продольные акустические волны ультразвукового диапазона частот (1 - 15 МГц), при распространении которых направления колебаний частиц среды и движение волны совпадают. Продольные ультразвуковые волны в средах распространения характеризуются вектором скорости, коэффициентом затухания и коэффициентом отражения волн от границ сред, обладающих различным акустическим сопротивлением - импедансом. Все эти характеристики в зависимости от способа их регистрации могут быть использованы для формирования теневых, эхолокационных и других видов ультразвуковых изображений. Основой диагностического применения ультразвука служит феномен отражения ультразвуковой энергии на границе сред (тканей) с различным акустическим сопротивлением.

Распространение и отражение ультразвука - два основных принципа, на которых основано действие всей диагностической ультразвуковой аппаратуры.

Получение ультразвуковых колебаний. Основой генерирования и регистрации ультразвуковых колебаний является прямой и обратный пьезоэлектрический эффект. Для получения ультразвуковых колебаний используют обратный пьезоэлектрический эффект, сущность которого заключается в том, что при создании электрических зарядов на поверхности граней кристалла последний начинает сжиматься и растягиваться. Возникают колебания, частота которых зависит от частоты смены знака потенциала на гранях кристалла. Большим преимуществом пьезоэлектрических преобразователей является то, что

источник ультразвука может служить одновременно и его приемником. При этом в действие вступает прямой пьезоэлектрический эффект, когда при деформации пьезокристалла воспринимаемым ультразвуковым сигналом на его гранях образуются разноименные электрические потенциалы, которые могут быть зарегистрированы. Для получения ультразвуковых колебаний чаще всего используется кристалл титаната циркония.

Частота ультразвукового сигнала при отражении его от движущегося объекта изменяется пропорционально скорости движения лоцируемого объекта вдоль оси распространения сигнала - это явление называется эффектом Доплера. При движении объекта в сторону датчика, генерирующего ультразвуковые импульсы, частота отраженного сигнала увеличивается, и наоборот, при отражении сигнала от удаляющегося объекта частота отражённого сигнала уменьшается. Измеряя частоту отраженного сигнала и зная частоту посланного сигнала, можно по сдвигу частоты (D¦) определить скорость движения исследуемого объекта в направлении, параллельном ходу ультразвукового луча. При движении объекта под углом по отношению к лучу для определения скорости вносится соответствующая поправка на величину угла.

Ультразвуковые изображения несут информацию о незначительных изменениях параметров сред (порядка 1-2 %) и позволяют визуализировать структурно-топографические взаимоотношения внутренних органов и мягких тканей. Сильное отражение ультразвуковых колебаний (почти 100 %) от границ раздела мягкая ткань - воздух или мягкая ткань - кость ограничивает применение УЗИ для исследования легких, желудочно-кишечного тракта, головного мозга. Амплитуда эхосигналов несет информацию о процессах поглощения рассеяния и обратного отражения ультразвуковых зондирующих импульсов в исследуемой среде. Путём измерения этих величин, являющихся параметрами эхо-изображения, могут быть определены: 1) глубина залегания неоднородности; 2) направление на неё; 3) линейные размеры и расстояния между несколькими неоднородностями; 4) при соответствующем конструктивном обеспечении возможны измерения, связанные с преимуществом отдельных структур объектов относительно направления ультразвукового зондирования.



Поделиться:


Последнее изменение этой страницы: 2017-01-26; просмотров: 303; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.252.37 (0.005 с.)