Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Основные свойства рентгеновских лучей↑ Стр 1 из 13Следующая ⇒ Содержание книги
Поиск на нашем сайте
Основные свойства рентгеновских лучей 1.Рентгеновы лучи, исходя из фокуса рентгеновской трубки, распространяются прямолинейно. 2. Они не отклоняются в электромагнитном поле. 3. Скорость распространения их равняется скорости света. 4.Рентгеновы лучи невидимые, но поглощаясь некоторыми веществами, они заставляют их светиться ярким зеленоватым светом. Это свечение называется флюоресценцией, оно лежит в основе рентгеноскопии. 5. Рентгеновы лучи обладают фотографическим действием. На этом свойстве рентгеновых лучей основывается рентгенография (общепринятый в настоящее время метод производства рентгеноснимков). Это по существу фотография при помощи рентгеновых лучей. 6.Лучи обладают ионизирующим действием и придают воздуху способность проводить электрический ток. Ни видимые, ни тепловые, ни радиоволны не могут вызвать это явление. На основе этого свойства рентгеновы лучи, как и лучи радиоактивных веществ, называются ионизирующим излучением. 7. Однако главное, поистине чудесное свойство рентгеновских лучей - их проникающая способность, т.е. способность свободно проходить через тело и предметы. Как воздух, чистая вода или стекло прозрачны для лучей солнца, так и для лучей Рентгена относительно прозрачны ткани человеческого тела, одежда, дерево, бумага и даже некоторые металлы. Проникающая способность рентгеновых лучей зависит от качества лучей. Чем короче длина рентгеновых лучей (т.е. чем жестче рентгеновское излучение), тем глубже проникают эти лучи и наоборот, чем длиннее волна лучей (чем мягче излучение), тем на меньшую глубину они проникают, от объема исследуемого тела: чем толще объект, тем труднее рентгеновы лучи “пробивают” его. Проникающая способность рентгеновских лучей зависит от химического состава и строения исследуемого тела. Чем больше в веществе, подвергаемом действию рентгеновых лучей, атомов элементов с высоким атомным весом и порядковым номером (по таблице Менделеева), тем сильнее оно поглощает рентгеновы лучи и, наоборот, чем меньше атомный вес, тем прозрачнее вещество для этих лучей. Чем же объяснить проникающую способность рентгеновых лучей? Объяснение этого явления в том, что в электромагнитных колебаниях с очень малой длиной волны, каковыми являются рентгеновы лучи, сосредоточена большая энергия. 8. Лучи Рентгена обладают активным биологическим действием. При этом критическими структурами являются ДНК и мембраны клетки. На использовании этого свойства основана лучевая терапия ионизирующими излучениями. Необходимо учитывать еще одно обстоятельство. Рентгеновы лучи подчиняются закону обратных квадратов, т.е. интенсивность рентгеновских лучей обратно пропорциональна квадрату расстояния.
Параметры оценки качества рентгеновского изображения. Каждая ткань и просветление, выявляемые при рентгенологическом исследовании, характеризуются строго определенными признаками, а именно: числом, положением, формой, размером, интенсивностью, характером рисунка, структурой, характером контуров, наличием или отсутствием подвижности, смещаемости тени, динамикой тени во времени. Определение радиофармацевтического препарата (РФП). Требования к РФП. Способы подведения РФП к исследуемому объекту. РФП - называется химическое соединение, содержащее в своей молекуле определенный радиоактивный нуклид, которое разрешено для введения человеку с диагностической или лечебной целью. В большинстве случаев в качестве индикаторов применяют физиологически активные или, как принято говорить, тропные к тем или иным органам (физиологическим системам) неорганические или органические соединения, белковые тела (в том числе антигены, антитела, гормоны), а в ряде случаев даже форменные элементы крови. В типичном варианте меченый индикатор вводится в кровеносное русло, и с этого момента начинается процесс собственно радионуклидного диагностического исследования. Все этапы транспорта индикатора могут быть представлены в систематизированном виде: 1) введение в кровеносное русло порции раствора индикатора; 2) механический его транспорт по венозному руслу и к сердцу; 3) постепенное размешивание препарата в камерах сердца и в кровеносном русле, а в ряде случаев и связывание с белками плазмы; 4) проникновение физиологически активного соединения сквозь гематотканевые барьеры; 5) прохождение из межуточного вещества в тропные для данного индикатора клетки; 6) концентрирование препарата, реакции его с нейтрализующими соединениями или белками-кондукторами и т.д., а в ряде случаев даже инкорпорирование в специализированных клетках или включение в синтезируемые в организме соединения (аминокислоты, белки и т.д.); 7) активный выход препарата из клеток в протоки экскретирующих систем или в межуточное вещество, затем вновь в кровяное русло или в лимфатические капилляры; 8) выведение препарата из организма через выделительные системы. Очевидно, что первый, второй, третий и восьмой этапы (первая группа) должны быть отнесены к этапам биомеханического транспорта препарата. Четвертый, пятый, шестой и седьмой этап (вторая группа) должны быть отнесены к этапам биохимического или метаболического характера. Разумеется, что последовательность эта условна. Кроме того, при интегральном, ингаляционном или интралюмбальном введении появляется некоторое дополнительное количество этапов транспорта. Наоборот, количество этапов транспорта резко уменьшается, если в качестве индикатора используется какое-нибудь физиологически инертное высокомолекулярное соединение или меченые элементы крови, длительное время не покидающие кровяное русло и циркулирующие в нем. Радионуклидная диагностика строится на применении таких меченых соединений, поведение которых в организме отражает особенности состояния его органов и функциональных систем. При этом, благодаря высочайшей чувствительности радиодиагностических приборов, РФП вводится в индикаторных количествах, не влияя на физиологические и морфологические показатели, а только отражает их состояние. Таким образом, требованиями, предъявляемыми к РФП, являются: 1) малая токсичность; 2) испускание частиц, или фотонов, которые удобно регистрировать с помощью существующей аппаратуры; 3) диагностический смысл. Для регистрации радиоактивного нуклида, находящегося в организме человека, необходимо, чтобы его излучение обладало достаточным уровнем энергии гамма-квантов, а большая его часть проникала с минимальным рассеиванием в тканях. В этом плане целесообразны излучатели с энергией гамма-квантов от 50 - 150 кэВ (197Нg, 99mTc). Комплексная лучевая терапия. Варианты проведения. Особенности фракционирования дозы излучения. Комплексная лучевая терапия предусматривает сочетанное использование лучевой и химиотерапии и преследует двоякую цель: взаимное усиление воздействия ионизирующей радиации и химиотерапии на первичную опухоль (достижение аддитивного, потенцирующего и синхронизирующего эффектов), а также создание условий для профилактики метастазов и лечения субклинических или же выявленных метастазов. Различают два основных варианта комплексного лечения: 3. когда лучевая терапия – основной, или базовый, метод, а химио-гормональное лечение – дополнительный, направленный на излечение отдаленных метастазов, при этом подводится СОД не ниже 60 Гр. 4. когда ионизирующее излучение используется как адъювантное средство химиолучевого лечения. В этих случаях дозы облучения могут быть уменьшены на 1/3 от “канцерицидной” и составляют 30-36 Гр. Применяется при лечении опухолей яичка, нефробластомах, лимфогранулематозе, злокачественных неходжкинских лимфомах. Используется, как правило, вариант обычного фракционирования дозы, т.к. возможен синергизм и в отношении поражения здоровых тканей. Последовательность может варьировать в зависимости от конкретной локализации.
65. Радиобиологическое планирование лучевой терапии. Цель планирования лучевой терапии - включение в зону облучения минимально возможного объема тканей, но в то же время достаточного для воздействия на все опухолевые элементы. Исходя из этого, различают 5 типов объемов облучения. Большой (макроскопический) объем опухоли (БОО) включает видимую опухоль. Клинический объем мишени (КОМ) включает видимую опухоль и объемы предполагаемого субклинического распространения. Концепция КОМ является клинико-анатомической. Планируемый объем мишени (ПОМ) включает КОМ и окружающие ткани с поправкой на вариации в размере, форме и положении относительно лечебных пучков, поэтому ПОМ является геометрической концепцией. Объем, который получает дозу, достаточную для радикального или паллиативного лечения с учетом толерантности нормальных тканей, обозначается как объем лечения. Наиболее оптимальное распределение дозы излучения достигается при объемном (трехмерном) планировании. Объемное планирование лежит в основе конформного облучения, при котором во время перемещения пучка излучения поле облучения регулируется по форме и размерам в соответствии с изменением поперечного сечения мишени, перпендикулярного направлению пучка в пространстве. Служба предлучевой подготовки предназначена для проведения комплексной топометрии больных, подлежащих различным видам лучевой терапии с использованием биометрических, рентгенологических, изотопных, УЗ и МРТ методов исследования, для клинико-дозиметрического обеспечения курса лучевой терапии.
66. Топометрическое планирование лучевой терапии. Основой лучевого лечения онкологических больных является правильное подведение заданной дозы к злокачественному очагу при минимальном облучении окружающих его здоровых органов и тканей. Определение размеров, площади, объема патологических образований, органов и анатомических структур, описание в количественных терминах их взаимного расположения (синтопии) у конкретного больного называется клинической топометрией. Для того, чтобы выбрать варианты и параметры программы облучения, нужно знать форму и размеры очага-мишени, ее ориентацию в теле пациента, а также синтопию окружающих органов и тканей, расстояние между мишенью и наиболее важными, с точки зрения распределения лучевой нагрузки, анатомическими структурами и «критическими органами». Эти сведения позволяют получить различные методы лучевой диагностики, но наиболее часто применяется для этих целей рентгеновская компьютерная томография. Данные, полученные при выполнении оперативных вмешательств, также позволяют определить размеры опухоли. Затем изготавливают схемы сечения тела на уровне “мишени”– так называемые топометрические схемы (т.е. производят клиническую топометрию). Современные системы дозиметрического планирования воспринимают топометрическую информацию непосредственно с магнитного носителя КТ и печатают топометрическую карту с нанесенным на ней выбранным распределением изодоз. Изодозные линии соединяют точки с одинаковым значением поглощенной дозы. Отмечают относительные значения – в процентах от максимальной поглощенной дозы, принимаемой за 100%. Для расчета изодозных кривых используются специальные компьютерные программы, которые учитывают пространственные параметры облучаемого объекта и дозиметрическую характеристику применяемого пучка излучения. Для того, чтобы составить представление о распределении поглощенных доз в облучаемом объеме, на топометрические схемы наносят изодозные кривые и получают, таким образом, карту изодоз. В практике лучевой терапии дозное распределение считают приемлемым, если вся опухоль заключается в дозе 100-90%, зона субклинического распространения опухоли и регионарного метастазирования находится в пределах 80% изодозы, а здоровые ткани – не более 50-30% изодозы.
Основные свойства рентгеновских лучей 1.Рентгеновы лучи, исходя из фокуса рентгеновской трубки, распространяются прямолинейно. 2. Они не отклоняются в электромагнитном поле. 3. Скорость распространения их равняется скорости света. 4.Рентгеновы лучи невидимые, но поглощаясь некоторыми веществами, они заставляют их светиться ярким зеленоватым светом. Это свечение называется флюоресценцией, оно лежит в основе рентгеноскопии. 5. Рентгеновы лучи обладают фотографическим действием. На этом свойстве рентгеновых лучей основывается рентгенография (общепринятый в настоящее время метод производства рентгеноснимков). Это по существу фотография при помощи рентгеновых лучей. 6.Лучи обладают ионизирующим действием и придают воздуху способность проводить электрический ток. Ни видимые, ни тепловые, ни радиоволны не могут вызвать это явление. На основе этого свойства рентгеновы лучи, как и лучи радиоактивных веществ, называются ионизирующим излучением. 7. Однако главное, поистине чудесное свойство рентгеновских лучей - их проникающая способность, т.е. способность свободно проходить через тело и предметы. Как воздух, чистая вода или стекло прозрачны для лучей солнца, так и для лучей Рентгена относительно прозрачны ткани человеческого тела, одежда, дерево, бумага и даже некоторые металлы. Проникающая способность рентгеновых лучей зависит от качества лучей. Чем короче длина рентгеновых лучей (т.е. чем жестче рентгеновское излучение), тем глубже проникают эти лучи и наоборот, чем длиннее волна лучей (чем мягче излучение), тем на меньшую глубину они проникают, от объема исследуемого тела: чем толще объект, тем труднее рентгеновы лучи “пробивают” его. Проникающая способность рентгеновских лучей зависит от химического состава и строения исследуемого тела. Чем больше в веществе, подвергаемом действию рентгеновых лучей, атомов элементов с высоким атомным весом и порядковым номером (по таблице Менделеева), тем сильнее оно поглощает рентгеновы лучи и, наоборот, чем меньше атомный вес, тем прозрачнее вещество для этих лучей. Чем же объяснить проникающую способность рентгеновых лучей? Объяснение этого явления в том, что в электромагнитных колебаниях с очень малой длиной волны, каковыми являются рентгеновы лучи, сосредоточена большая энергия. 8. Лучи Рентгена обладают активным биологическим действием. При этом критическими структурами являются ДНК и мембраны клетки. На использовании этого свойства основана лучевая терапия ионизирующими излучениями. Необходимо учитывать еще одно обстоятельство. Рентгеновы лучи подчиняются закону обратных квадратов, т.е. интенсивность рентгеновских лучей обратно пропорциональна квадрату расстояния.
|
||||
Последнее изменение этой страницы: 2017-01-26; просмотров: 1253; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.162.74 (0.03 с.) |