Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Физико-химические свойства и особенности средств тушенияСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Вода. Является наиболее широко применяемым средством тушения пожаров различных веществ и материалов. К достоинствам воды, как средства тушения, относятся доступность, дешевизна, значительная теплоемкость, высокая скрытая теплота испарения, подвижность, химическая нейтральность и отсутствие ядовитости. Вода не только обеспечивает тушение многих объектов, но и, эффективно охлаждая их, защищает от возгорания соседние с горящим объекты. К недостаткам воды относятся сравнительно высокая температура замерзания, недостаточная в ряде случаев (например, при тушении тлеющих материалов) смачивающая способность, сравнительно высокая электропроводность (особенно в присутствии добавок против замерзания, смачивателей и др.), затрудняющая тушение установок под напряжением. Для понижения температуры замерзания в воду вводят антифризы (некоторые минеральные соли, гликоли). Чтобы повысить смачивающую способность воды, в нее вводят 0,5—2,0 % поверхностно-активных веществ (ПАВ) — сульфонаты, сульфонолы НП-1 и НП-3, смачиватели ДБ, НБ, ОП-7 и ОП-10, пенообразователи (ПО). Для уменьшения растекаемости в воду вводят добавки, повышающие ее вязкость (например, натрийкарбокси-метилцеллюлозу). Воду нельзя применять для тушения веществ, бурно реагирующих с ней с выделением тепла, горючих, а также токсичных и коррозионно-активных газов. К таким веществам относятся многие металлы и металло-органические соединения, карбиды и гидриды металлов, раскаленные уголь и железо. Нефтепродукты и многие другие органические жидкости при тушении водой могут всплывать на ее поверхность, увеличивая площадь пожара. В этом случае целесообразно применять распыленную воду. Характер дробления воды {размер капель) должен подбираться с учетом температуры вспышки жидкости. Следует помнить, что при тушении водой масел и жиров могут происходить выброс или разбрызгивание горящих продуктов. Нельзя также применять для тушения горючих пылей сплошные струи воды во избежание образования взрывоопасной среды. В этом случае надо применять распыленную воду со смачивателем. Для определения возможности тушения водой (а также пенами и другими средствами на водной основе) веществ и материалов проводятся специальные испытания (см. разд. 4). Кратная сводка веществ и материалов, для тушения которых нельзя применять воду и составы на ее основе, приведена в табл. 3.2. Таблица 3.2. Вещества и материалы, для тушения которых нельзя применять воду а составы на ее основе Вещество клн материал Характер взаимодействия с водой Алюминийорганические соединения, Реагируют со взрывом Литнйорганические соединения, Разложение с выделением горю- азид свинца, карбиды многих ме- чих газов Серная кислота, термит, хлорид Сильный экзотермический эф- титана фект Гидросульфит натрия Самовозгорание Битум, жиры, масла, петролатум Усиление горения, разбрызги Пены. Широко используются при тушении пожаров на промышленных предприятиях, складах, нефтехранилищах и т. п. Пены представляют собой коллоидные системы, состоящие из пузырьков газа, окруженных пленками жидкости, и характеризуются агрегативной и термодинамической неустойчивостью. Для получения пен к воде добавляют ПО и пенопорошки, в качестве которых применяют некоторые природные и синтетические ПАВ. Кроме того, для повышения устойчивости, морозостойкости и других показателей вводят различные стабилизаторы и добавки. К достоинствам пен как средств тушения относятся: существенное сокращение расхода воды, возможность тушения больших площадей, повышенная (по сравнению с водой) смачивающая способность. Особенно важно то, что в отличие от большинства других средств при тушении пенами не требуется одновременное перекрытие всего зеркала горения (или большей его части), поскольку пена способна растекаться по поверхности горящего материала. Пены характеризуются кратностью, дисперсностью, вязкостью и т. д. Наиболее важной характеристикой является кратность пены, под которой понимают отношение объема пены к объему ее жидкой фазы. В зависимости от способа и условий получения сгне-тушащие пены подразделяются на химическую и воздушно-механическую различной кратности. Химическая пена образуется при взаимодействии растворов кислот и щелочей в присутствии ПО. Химическую пену применяют редко. Для получения воздушно-механической пены требуются специальная аппаратура и водные растворы ПО. Воздушно-механическая пена подразделяется на низкократную (кратность до 30), среднекратную (30— 200) и высокократную (> 200). Наиболее широкое применение находит пена средней кратности (70—150). Для получения воздушно-механических пен применяют следующие ПО: ПО-1 (ГОСТ 6948—81), представляющий собой раствор нейтрализованного керосинового контакта Петрова (натриевые соли сульфокислот) с добавками костяного клея и этанола или этиленгликоля, пригоден для тушения пожаров классов А и В (кроме полярных соединений); ПО-1Д (ТУ 3810799—81) — раствор алкиларилсульфоната (назначение см. ПО-1); ПО-lc (ТУ 3820767—83) — это ПО-1Д с добавкой аль-гината натрия и спиртов фракции Сю — Ci2, пригоден для тушения пожаров классов А и В (в том числе для тушения этанола и других полярных веществ, в связи с большим расходом применяется редко); ПО-ЗАИ (ТУ 3810923—75) —раствор вторичных алкилсульфа-тов (назначение см. ПО-1), обладает пониженной коррозионной способностью; ПО-6К (ТУ 3810740) — раствор смеси натриевых солей сульфокислот (назначение см. ПО-1); ПО «ТЭАС» (ТУ 107127—82) — обладает биоразлагаемостью, можно использовать для тушения нефтепродуктов и твердых материалов (для пожаров классов А и В); ПО «САМПО» (ТУ 10950— 78) — обладает повышенной огнетушащей способностью, биоразлагаем, пригоден для тушения пожаров классов А и В; ПО «Форэтол» (ТУ 6-02-780—86) — на основе фторированных ПАВ, пригоден для тушения пожаров класса В (в том числе полярных жидкостей — спиртов, эфиров и т. п.) без разбавления (в отличие от ПО-1С), характеризуется наиболее высокой огнетушащей способностью; ПО универсальный (ТУ 6-02-2-890—86) — на основе фторированных ПАВ, применяется при тушении различных, в том числе полярных, жидкостей. Концентрация раствора 10 %. Следует иметь в виду, что воздушно-механическая пена, полученная с использованием ПО на основе алкил-арилсульфонатов, например натриевых солей сульфокислот (называемых в дальнейшем «обычными» ПО, в отличие от фторосодержащих), быстро разрушается на полярных органических жидкостях и поэтому не может применяться для их тушения. Для тушения полярных жидкостей следует применять пену, получаемую при помощи ПО на основе фторированных ПАВ («форэтол», универсальный). К полярным, обусловливающим разложение пен на основе обычных ПО (ПО-1Д, ПО-6К, ПО-ЗАИ, Сампо), относятся следующие вещества: Кислоты R — С— ОН Кетоны R— С—R' II II О О Спирты R —СН2—ОН Простые эфиры R—О—R' Альдегиды R —С —Н Сложные эфиры R —С—OR' II It , о о Амины R —NH2 В частности, к ним относятся: ацеталь, ацетальдегид, уксусный ангидрид, ацетоацелинид, ацетон, акриловая кислота, алдол, анилин, бутилкарбитол, бутилкрезол, бутилдиэтаноламин, бутиленгликоль, гидропероксид бутила, хлорацетофенон, хлорнитропропан, я-крезол, циклогексанон, гидразин, диметилгидразин, диоксан, эпихлоргидрин, этаноламин, этиленгликоль, фурфурол, метакриловая кислота, метилформиат, фенол и др. Нормативную интенсивность подачи пены при тушении жидких горючих в резервуарах устанавливают по зависимости /„ = 2,3/хр, (3.2) где /кр — критическая интенсивность, определяемая из опыта. Минимальная интенсивность подачи растворов ПО передвижными средствами тушения пожаров класса В составляет [в кг/(м2-с)]: 0,08—ПО-1, ПО-1Д, ПО-6К, ПО-ЗАИ, ПО «ТЭАС»; 0,05 — ПО «Сампо», 0,3—ПО-1с (при тушении эталона); 0,15 — ПО «ФОРЭТОЛ» и ПО универсальный при тушении этанола и других полярных жидкостей и 0,05 — для других ЛВЖ. При устройстве стационарных (в том числе автоматических) установок тушения воздушно-механической пеной нормативная интенсивность подачи раствора ПО (согласно СНиП 2.04.09—84) в зависимости от условий составляет 0,08—0,4 кг/(м2-с). Инертные разбавители. В качестве инертных разбавителей используют газообразные диоксид углерода, азот, аргон, дымовые газы, водяной пар. Горение большинства веществ прекращается при снижении содержания кислорода в атмосфере защищаемого объема до 12— 15% (об.). Для веществ, характеризуемых широкой концентрационной областью распространения пламени (водород, ацетилен, диборан и др.), металлов, тлеющих материалов предельное содержание кислорода составляет 5 % и ниже. Наиболее широкое применение из указанных газообразных разбавителей находит диоксид углерода. Его используют в стационарных установках (объемного тушения), в ручных (ОУ-2, ОУ-5, ОУ-8) и возимых (УП-2М) огнетушителях. Особенностью диоксида углерода является его способность при дросселировании образовывать хлопья «снега». При поверхностном тушении «снежным» диоксидом углерода его разбавляющее действие дополняется охлаждением очага горения. Если нельзя применять диоксид углерода (например, при горении металлов и некоторых других веществ), используют азот или аргон. Аргон применяют тогда, когда имеется опасность образования взрывчатых Таблица 3.3. Значения коэффициента Кг, учитывающего вид горючего
нитридных соединений (например, нитридов некоторых металлов). Огнетушащая концентрация диоксида углерода для большинства горючих веществ составляет от 20 до 40 %. Нормативная величина расхода СОг при объемном тушении составляет 0,7 кг на 1 м3 защищаемого помещения; при расчете установок пожаротушения эту величину умножают на коэффициент Къ, учитывающий вид горючего (табл. 3.3.). Требуемый для стационарных установок объемного тушения запас диоксида углерода m рассчитывают по формуле (в кг) т=1,1К2 1Кз(А1+30А2)+0,7У], (3.3) где /Сз — коэффициент, учитывающий утечку СОг через неплотности (принят равным 0,2 кг/м2); А\ и А2 — суммарные площади ограждающих конструкций и открытых проемов соответственно, м2; V — объем помещения, м3. Время подачи СОг по нормам принимают от 60 до 120 с. Диоксид углерода (как и многие другие средства) недостаточно эффективен при тушении глубинных пожаров тлеющих материалов. Для тушения таких материалов целесообразно добавлять к СО2 хладоны (см. ниже). Небольшие добавки СО2 [до б % (об.)] к азоту позволяют существенно повысить эффективность последнего при объемном тушении щелочных металлов. Хладоны. Хладоны — это товарное наименование предельных галогенуглеводородов, в молекулах которых обязательно имеются атомы фтора, а также могут быть все остальные галогены (ранее назывались фре-онами). Для пожаротушения используют обычно бром-содержащие, а также бромхлоросодержащие хладоны. Основу хладонов, применяемых для пожаротушения, составляют алканы с числом атомов углерода от 1 до 3. По принятой в СССР номенклатуре хладоны обозначают следующим образом: первая цифра — число атомов углерода в молекуле минус единица, вторая — число атомов водорода плюс единица, третья — число атомов фтора; бром (а также иод) обозначают буквой В (или I) и цифрой, соответствующей числу атомов Вг (или I); число атомов хлора определяется по числу оставшихся в молекуле незаполненных (свободных) связей. Например, дифторхлорбромметан (CF2CIBr) обозначается как хладон 12В1. Хладоны в отличие от водо-пенных средств и инертных разбавителей являются ингибиторами горения, т. е. веществами, способными активно вмешиваться в химические процессы, тормозя их. Наиболее эффективно хладоны тормозят горение органических веществ (нефтепродуктов, растворителей и др.) и значительно слабее тормозят горение водорода, аммиака и некоторых других веществ. Хладоны неприемлемы для тушения металлов, многих металлоорганических соединений, некоторых гидридов металлов, а также тогда, когда окислителем при пожаре является не кислород, а другие вещества (например, галогены, оксиды азота). Механизм огнетушащего действия хладонов заключается в торможении цепного процесса, происходящего при горении, что обусловлено связыванием активных центров (преимущественно атомов водорода). Физико-химические свойства хладонов, наиболее широко применяемых для пожаротушения, даны в табл. 3.4. Как следует из данных табл. 3.4, по огнетушащей способности хладоны 114В2 и 13В1 близки, а хладон 12В1 несколько уступает им. Хладоны используют в основном в установках объемного тушения и флегматизации, а также в ручных огнетушителях. Возможность применения хладонов в качестве средств объемного тушения и флегматизации обусловлена легкостью образования газовой фазы, высокой плотностью паров, хорошими диэлектрическими свойствами, низкими тем- Таблица 3.4. Физико-химические свойства пожаротушащих хладонов Физико-химические свойства CF3Br C2F4Br2 CF2CIBr Номер хладона 13В1 114В2 12В1 Молекулярная масса 148,93 259,89 165,4 кипения —57,8 47,5 —4,0 замерзания —168,0 —110,5 —160,5 Давление пара при 20 °С, 1480 38 266 Плотность жидкости, г/см3 1,575 2,18 1,83 Плотность пара, кг/м3 6,2 10,9 6,9 Вязкость при 20 °С, Па-с/м2 160 762,520 Температура самовоспл., °С 695 542 Не опред. Огнетушащая концентрация 220—250 195—220 255 для нефтепродуктов, кг/м3 (1,9—2,2) (3,0—3,1) (3,5) пературами замерзания и др. Хладоны обладают сравнительной низкой коррозионной активностью и умеренной токсичностью (особенно хладон 13В1, относящийся к наименее вредным веществам группы 6). Для огнетушителей используют хладоны 114В2 и 12В1. Хладон 13В1 применяют в качестве пропеллента (например, в огнетушителях типа ОАХ-0,5). Хладоны 13В1, 114В2 и 12В1 относятся к трудногорючим веществам, поскольку способны самовоспламеняться в воздухе (при температурах выше ~550—600 °С), но не имеют пределов распространения пламени. Самовоспламенение хладонов наблюдалось лишь в специальных опытах, и потому практически их следует считать негорючими (более подробно пожароопасные свойства хладонов см. в разд. 5). Следует помнить, что в кислороде пары хладона 114В2 становятся горючими, имеющими пределы распространения пламени. Хладоны успешно используют для защиты вычислительных центров, окрасочных отделений и камер, музеев, архивов, машинных залов и т. д. Масса m хладона 114В2, требуемая для расчета систем объемного тушения, определяется по формуле (в кг) т = К<7„/С+/п,Ц-т2 + тз, (3.4) где V — объем помещения, м3; qn — нормативная огнетушащая концентрация, равная 0,37 кг/м3 для помещений категорий А и Б по пожароопасности и 0,22 кг/м3 — для категории В; К — коэффициент, учитывающий потери хладона в трубопроводах и в результате утечек (принимается равным 1,2 для помещений, 1.1 для подполий); т\ —остаток хладона в баллонах, кг; £ — число баллонов; т2 — остаток хладона в распределительных трубопроводах (для кабельных подполий), кг; т3 — остаток хладона в коллекторе, кг. Во ВНИИПО для установок пожаротушения хладо-ном 13В1 разработаны самостоятельные рекомендации («Рекомендации по проектированию установок пожаротушения хладоном 13В1» М., ВНИИПО, 1985), учитывающие требования международного стандарта «Автоматические системы пожаротушения, использующие хладон», 1982 г. Некоторые из этих рекомендаций, необходимые в качестве исходных для проектирования систем объемного тушения, изложены в разд. 4. По СНиП 2.04.09—84 время подачи хладонов в зависимости от категории помещения по пожаро- и взрыво-опасности принято от 60 до 120 с, по указанным выше «Рекомендациям» — 30 с. Необходимо отметить, что результатами специальных исследований оптимальное время установлено равным 10 с. Такая продолжительность подачи хладонов при объемном тушении хорошо согласуется с последними зарубежными нормами. Порошки. Огнетушащие порошки представляют собой мелкоизмельченные минеральные соли с различными добавками, препятствующими слеживанию и комкованию. В качестве основы для огнетушащих порошков используют фосфорноаммонийные соли (моно-, диаммо-нийфосфаты, аммофос), карбонат и бикарбонат натрия, хлориды натрия и калия и др. В качестве добавок — кремнийорганические соединения (например, аэросил AM-1-300), стеараты металлов, нефелин, тальк и др. Эти порошки обладают высокой огнетушащей способностью и обеспечивают, например, тушение пожаров класса В на большой площади в течение нескольких секунд. К достоинствам порошков также относятся: возможность их применения для тушения пожаров любых классов (которые невозможно тушить водой и другими средствами, например металлы), разнообразие способов пожаротушения (стационарные установки, огнетушители, автомобили, флегматизация, взрывопо-давление), возможность тушения электрооборудования под напряжением и др. 4 Пожаровзрывоопасиость... Кн. I 97 Таблица 3.5- Основные сведения об огнетушащих порошках
Механизм огнетушащего действия порошков заключается в ингибировании горения в результате связывания активных центров цепных реакций, протекающих в пламени. Происходит либо гетерогенная рекомбинация этих центров на поверхности порошков, либо гомогенное взаимодействие газообразных продуктов возгонки порошков с активными центрами. Огнетушащая способность порошков зависит не только от химической природы порошков, но и от степени их измельчения. Чем мельче частицы порошков, тем больше их поверхность и тем выше их эффективность. Но возможность приготовления и применения очень тонких порошков ограничена. Оптимальный размер порошков общего назначения (ПСБ, ПФ, ПГС и т. п.) составляет 40—80 мкм. Порошки хранят в специальных упаковках, предохраняя их от увлажнения, и подают в очаг горения сжатыми газами. Порошки не обладают токсичностью, мало агрессивны, сравнительно дешевы, удобны в обращении. Основные сведения о применяемых в нашей стране порошках приведены в табл. 3.5 (кроме указанных порошков для тушения некоторых веществ класса D применяют порошок фторида кальция; рекомендации по его применению изложены в разд. 4). Комбинированные составы. Комбинированные — это огнетушащие составы, в которых сочетаются свойства различных огнетушащих средств. Наиболее эффектив- ными являются такие составы, которые представляют собой комбинации носителя с сильным ингибитором горения. К ним относятся, например, водно-хладоновые эмульсии и комбинации воздушно-механической пены с хладонами. К комбинированным можно отнести также-порошок СИ-2. Для объемного тушения разработаны азотно-хла-доновый и углекислотно-хладоновый составы, обеспечивающие 4—5-кратное снижение удельного расхода дорогостоящих и дефицитных бром-хладонов. Особенно перспективен состав, содержащий 85 % (масс.) ССЬ и-15 % (масс.) хладона 114В2. Этот состав рекомендуется СНиП 2.04.09—84. К его достоинствам относится взаимная растворимость компонентов при указанных соотношениях в конденсированной фазе (под давлением). При этом обеспечивается возможность хранения состава в одном баллоне, что значительно упрощает и удешевляет его применение. Расчетная масса состава т определяется по формуле (в кг) (3.5) где К — коэффициент, учитывающий негерметичность помещения; V — объем помещения, м3; qn — норма подачи, равная 0,27 кг/м3 при т = 30 с и 0,4 кг/м3 при т = 60 с. Для объемного тушения в помещениях с натрием разработан комбинированный состав, содержащий 94 % (об.) азота и 6 % (об.) диоксида углерода. Добавка диоксида углерода к азоту обусловливает снижение пирофорности натрия (увеличение его температуры самовоспламенения) и увеличение огнетушащей способности азота. МЕТОДЫ ОПРЕДЕЛЕНИЯ НОРМАТИВНЫХ ПАРАМЕТРОВ ПОЖАРОТУШЕНИЯ Нормативными параметрами пожаротушения являются: пригодность различных огнетушащих средств тушения к данным горючим веществам и материалам; удельное количество огнетушащего средства, необходимого для тушения данных веществ и материалов данным способом G; время тушения т; 4* 99 интенсивность подачи огнетушащего средства I. Пригодность огнетушащих средств показывает, можно ли применять данное огнетушащее вещество для тушения данного материала. Критериями пригодности огнетушащего вещества являются отсутствие взрывов, черезмерного разгорания, хлопков, вскипания горящего продукта, а также достижение эффекта тушения (например, применение диоксида углерода для тушения металлов хотя и не вызывает хлопков, разгорания и других нежелательных явлений, но и тушение не достигается). Применительно к тушению горючих веществ водой и водопенными средствами разработана инструкция, согласно которой в нагретый до температуры, на 30—50 °С превышающей температуру воспламенения вещества (но не выше температуры кипения), металлический тигель диаметром 50 мм вводят 25 мл горячего вещества, зажигают и через 1—2 мин подают воду или пену в течение 1 мин (не более). Применение водопенных средств допустимо, если они тушат очаг горения в течение 20 с и при этом не происходит разгорания (увеличения пламени в 4 раза), вспенивания, выброса или взрыва. Следует подчеркнуть, что ограниченное применение водопенных средств по признаку разгорания (4-кратное увеличение пламени) оказывается в ряде случаев излишне «жестким». В частности, полигонными испытаниями показана возможность применения воды для тушения кремнииорганических соединений, что опровергает положение о недопустимости использования воды для этой цели по указанной инструкции. Поэтому необходимо ориентироваться на результаты, получаемые при укрупненных испытаниях с площадью очага пожара около 4 м2. Выше указывалось, что между нормативными параметрами тушения (С, /н и тн) существует определенная взаимосвязь, характеризуемая уравнением (3.1). Взаимосвязь между G и / характеризуется наличием минимума, которому соответствуют оптимальные условия пожаротушения, иллюстрируемые рис. 3.1. На основе этой взаимосвязи разработаны методы определения этих параметров при тушении составами на основе хладонов и порошками. Для определения огнетушащей способности пен разработан экспресс-метод, основан- ный на зависимости /„ = 2,3/Кр, где /кр — критическая Согласно СНиП 2.04.09—84 исходные требования для проектирования установок пожаротушения устанавливаются в зависимости от группы помещений, характеризуемой пожарной опасностью веществ и материалов, их количеством, функциональным назначением помещений. Всего предусмотрено семь групп помещений (зрительные залы, библиотеки, музеи и т. п.; окрасочные, деревообрабатывающие, текстильные цехи и т. п.; производство натуральных и синтетических волокон; машинные залы и т. п.; склады несгораемых материалов в сгораемой упаковке; склады твердых сгораемых материалов; склады ЛВЖ и ГЖ, резинотехнических изделий и т. п.). Требуемое для объемного тушения количество хладо-на 13В1 рассчитывают в соответствии с рекомендациями ВНИИПО по формуле (в кг) (3-6) где V — объем помещения, м3; у, — удельный объем газообразного хладона; С, — концентрация хладона, рассчитываемая с учетом экспериментально установленной минимальной огнетушащей концентрации Со, об. доли (для большинства органических веществ Со = 0,05). Согласно этим рекомендациям время подачи хладона принимается равным 30 с. Для определения норм подачи огнетушащих порошков во ВНИИПО разработаны указания *, согласно которым расход порошка на тушения рассчитывают по формуле (в кг) W! = KeWa, (3.7) где К — коэффициент запаса; e = mkT/W — показатель эффективности порошка; т* — среднее опытное критическое значение расхода порошка; W — удельная тепловая мощность очага пожара, кг/(кВт-м2); Wn — тепловая мощность очага пожара с учетом площади очага, кг/кВт. * Методические указания по определению огнетушащей эффективности и параметров подачи порошковых составов на тушения пожаров классов А, В, С. Киев. 1987. 4. РЕКОМЕНДАЦИИ ПО СРЕДСТВАМ, СПОСОБАМ ТУШЕНИЯ ВЕЩЕСТВ И МАТЕРИАЛОВ И НОРМАМ ПОДАЧИ ОГНЕТУШАЩИХ СОСТАВОВ Средства и способы пожаротушения, а также HqpMa ные параметры применения-этих средств (рекомендуется выбирать по табл. 4.'1. При подготовке этой таблицы использованы помимо указанных выше следующие методические материалы: 1) Временная инструкция по определению минималь 2) Рекомендации по средствам и способам тушения ВНИИПО, 1980; 3) Инструкция по определению ог.нетушаще'й спо 4) Инструкция по определению огнетушащей эффек 5) Методика определения интенсивности подачи рас 6) Строительные нормы и правила. Пожарная авто 7) Средства и нормы тушения (рекомендации). М.: 8) Временная инструкция по определению характера Представленные в таблице данные носят ориентировочный характер. В дальнейшем они будут уточняться по мере их накопления. В таблице использованы следующие условные обозначения: / — интенсивность подачи средства тушения; тт— время тушения;
о ы Неполярные углеводородные жидкости (в том числе нефтепродукты) 0,2 Q.OS 0,7 0,22 0,27 1,50 1,42 (Р,66) (0,89; 0,65; 0,47)
1) При крупных 2) В помещени 3) Небольшие Продолжение табл. 4.
2. Полярные углеводородные жидкости (спирты, ацетон, эфир и др.) 0,25 0,7 0,22 0,27 1,50 1,42 (0,66) (0,89; 0,65; 0,47) — 1) При крупных проливах — распыленная вода, пена, порошок ПСБ 2) В помещени 3) Малые оча
3. 5. 6. 7. 8. Твердые углеродистые и целлюлозные материалы (древесина, бумага, каучуки, пластмассы, хлопок и др.) Пыли органи-матери-(пласт-красите-лей и др.) Кремнийорга-нические соединения, мономеры (в том числе органохлорси-ланы) Кремнийорга-нические соединения, полимеры Углеводородные газы (в том числе сжиженные) Водород
0,05
0,2* 0,3*' 0,3*8 — 0,35 0,1s 0,08*9 —
0,7 0,22 *6 0,27 *в — 0,22** 0,27*' — — 6,0! 6,0 0,6 т=1,0 0,32 0,4 4*10 5*10 т = 0,5 1,16 0,57 — — т=0,5 — Вода со смачивателями, пена, порошок ПФ Распыленная вода со смачивателем Распыленная вода, порошки ПСБ, П<р 20 Распылённая вода, порошок СИ-2 — Объемное туше — Объемное туше s Продолжение табл. 4.1
9. Щелочные металлы (натрий, калий и др.) 2,0— 2,5" = №5-5,0) мин ПС-40—60; МГС*12-10, РС*|3-9,0 Порошки МГС и PC, объемное тушение комбинированным составом (N2 + CD2) 10. 11. 12. Щелочноземельные металлы (магний, алюминий и ДР-) Алюминийорга-нические соединения Литийоргани-ческие соединения 0,3*'6 — т=(2-5) мин 0,88; 2,5—16 (кг/м2)
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-30; просмотров: 726; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.93.14 (0.018 с.) |