Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Транспорт СО кровью. Формы транспорта. Значение карбоангидразы.↑ Стр 1 из 5Следующая ⇒ Содержание книги
Поиск на нашем сайте
Физиология системы дыхания Дыхание (respiration) – многоплановый термин, конкретное содержание которого зависит от области применения и контекста. В биоэнергетике дыхание рассматривается как процесс внутриклеточного освобождения энергии при разложении органических соединений и выработки АТФ. В биохимии дыхание исследуется как многоступенчатый ферментативный процесс окисления субстратов, протекающий на последовательно расположенных в мембранах клеточных органелл (митохондрии) ферментных комплексах дыхательной цепи, направляющих поток электронов на конечный акцептор. Если в качестве акцептора выступают нитриты, сульфиты или другие неорганические соединения, то такое дыхание называется анаэробным. Если в качестве конечного акцептора используется молекула кислорода – то говорят об аэробном дыхании. Часть освобожденной в процессе дыхания энергии затрачивается на активный транспорт и создание электрохимических градиентов на мембранах, часть рассеивается в виде тепла, часть аккумулируется в форме высокоэнергетических соединений. В физиологии термином дыхания обозначают процесс газообмена между организмом и средой его обитания, сопровождающийся поглощением кислорода, выделением углекислого газа и метаболической воды. У одноклеточных и ряда беспозвоночных, не имеющих специализированных образований для газообмена, осуществляется прямое дыхание через покровы без каких-либо движений и изменений объема тела. С увеличением массы тела в процессе эволюции возникают специализированные органы дыхания, имеющие развитую поверхность (жабры, легкие) и вспомогательные образования (дыхательные мышцы, осуществляющие принудительную вентиляцию), обеспечивающие непрямое дыхание. Наиболее часто под термином «дыхание» подразумевают периодическое движение грудной клетки, изменяющие ее объем и вызывающие возвратно-поступательное движение воздуха в дыхательных путях (респирация). Однако это лишь легко наблюдаемое проявление процесса вентиляции легких. В случае легочного дыхания выделяется 5 основных этапов процесса дыхания: 1) внешнее дыхание, или вентиляция легких – обмен газов между альвеолами легких и атмосферным воздухом; 2) обмен газов в легких между альвеолярным воздухом и кровью;
3) транспорт газов кровью, т.е. процесс переноса кислорода от легких к тканям и углекислого газа от тканей к легким; 4) обмен газов между кровью капилляров большого круга кровообращения и клетками тканей; 5) внутреннее дыхание – биологическое окисление в митохондриях клетки. Последний этап в основном изучается биохимиками, а первые 4 являются объектами физиологических исследований. Ещё одним важнейшим объектом физиологического исследования процесса дыхания является НЕЙРОГУМОРАЛЬНЫЙ АППАРАТ его регуляции. Существуют и внелегочные формы ВНЕШНЕГО ДЫХАНИЯ, осуществляющие газообмен между наружной и внутренней средами организма (между воздухом и кровью) без участия легкого. КОЖНОЕ дыхание. У человека в покое около 1,5 – 2,0 % всего газообмена организма обеспечивается за счет кожи, общая поверхность которой составляет 1,5 – 2,0 м2 и колеблется в зависимости от роста, масса тела, пола, возраста. В сутки через кожу в организм попадает около 4 г кислорода и выделяется около 8 г углекислого газа. Эти количества зависят от чистоты кожных покровов, температура окружающего воздуха и кожи, степени физической нагрузки, давления и др. Тот факт, что газообмен осуществляется в основном в легких, очевидно определяется рядом факторов: а) поверхность легких значительно больше поверхности кожи (общая поверхность альвеол по мнению различных авторов составляет от 40 до 140 м2. Чаще всего приводятся цифры 60-80 м2); б) толщина легочной мембраны значительно меньше (0,3-2,0 мкм), чем толщина кожи; в) объемная скорость кровотока легких в 313 раз выше, чем в коже. Однако и вклад кожного дыхания значителен. Это ощущает каждый после бани (особенно после парной), когда на короткий промежуток времени человек испытывает облегчение в дыхании. Существует даже термин «коже стало легче дышать». Дыхательные функции кожи человека в некоторых условиях приобретает существенное значение. Например, при выполнении тяжелой физической работы или при температуре окружающей среды 45ºС 23% газообмена осуществляется через кожу. ДЫХАНИЕ ЧЕРЕЗ СЛИЗИСТЫЕ ЖЕЛУДКА И КИШЕЧНИКА. На ранних стадиях эволюции животных пищеварительный тракт выполнял по совместительству дыхательную функцию. В дальнейшем, по мере появления различных видов сухопутных животных и образования в процессе филогенеза из верхнего отдела пищеварительной трубки специфических органов дыхания, пищеварительная и дыхательная функции полностью разделились, образуя соответствующие анатомические отделения, а затем высокоспециализированный орган дыхания – легкое, к которому и перешла функция снабжения организма кислородом, а также удаления из него избытка углекислого газа. Дыхательная функция желудочно-кишечного тракта перешла в категорию атавистической. Однако, при серьезных патологических ситуациях, например, при пороке развития легкого или его стойком ателектазе у новорожденных детей желудочно-кишечный тракт может временно выполнять дыхательную функцию. В желудке в обычных условиях может всасываться до 5% кислорода, необходимого для жизнедеятельности организма, в тонком кишечнике – 0,15 мл кислорода на 1 см2 за 1 час, в толстом кишечнике – 0,11 мл. В толстом кишечнике человека в покое всасывается 0,02-0,04 мл кислорода на 1 см2.
Влияние кишечника на дыхание может состоять и в том, что наполнение толстого кишечника газами приводит к подъему диафрагмы и затруднению дыхательных движений. Искусственное дыхание - дыхательные процессы, не имеющие в процессе эволюции прототипа и осуществляемые с использованием искусственных путей введения кислорода и выведения углекислого газа: - подкожное и внутривенное введение кислорода, - введение кислорода в крупные полости (плевральную, перитонеальную, в суставную сумку), - осуществление дыхания с подключением экстракорпорального кровообращения в системе аппарата искусственного кровообращения (оксигенатор-инжектор).
ЛЕГКИЕ – парные дыхательные органы, расположенные в плевральных полостях. Состоят из разветвлений бронхов, образующих бронхиальное дерево (воздухоносные пути легкого), и системы альвеол, которые вместе с дыхательными бронхиолами, альвеолярными ходами и альвеолярными мешочками составляет альвеолярное дерево (дыхательную паренхиму легкого). На стенках альвеолярных ходов и альвеолярных мешочков, а также дыхательных бронхиол располагаются открывающиеся в их просвет альвеолы легкого. Морфофункциональной единицей респираторного отдела легкого является ацинус. В понятие «ацинус» включаются все разветвления одной концевой бронхиолы – дыхательные бронхиолы всех порядков, альвеолярные ходы и альвеолы. Кровоснабжение легкого осуществляется легочными и бронхиальными сосудами. Легочные сосуды составляют малый круг кровообращения и выполняют главным образом функцию газообмена между кровью и воздухом. Бронхиальные сосуды обеспечивают питание легких и принадлежат большому кругу кровообращения. Между этими двумя системами существуют достаточно выраженные анастомозы. Капилляры образуют 4-12 петель на стенке альвеол и сливаются в посткапилляры. Сеть капилляров в легких очень густая. Общая площадь капиллярной сети одного легкого составляет 35-40 м2. Основная функция легких – дыхательная. Выделяют так называемые НЕДЫХАТЕЛЬНЫЕ ФУНКЦИИ ЛЕГКИХ: 1. Метаболическая. Участие в обмене жиров для образования сурфактантов, синтез простагландинов, синтез тромбопластина и гепарина, синтез протеолитических и липолитических ферментов. 2. Терморегуляторная. При снижении температуры в легких активируются экзотермические процессы (химическая теплопродукция), одновременно уменьшается капиллярный кровоток, а значит и физическая теплоотдача.
3. Барьерная. При вдыхании задерживаются механические частицы, которые потом удаляются ресничками мерцательного эпителия. Для крови – инактивация серотонина, простагландинов, ацетилхолина, брадикина, а также очистка крови от механических примесей. 4. Секреторная. Железы и секреторные клетки продуцируют 300-400 мл в сутки серозно-мукоидного секрета (защита). Эндокринная функция: продукция простагландинов и других биологические активных веществ. 5. Экскреторная. Удаляется углекислый газ и другие летучие метаболиты (например: ацетоновый запах при диабетической коме). Кроме того удаляется до 500 мл воды в сутки. 6. Всасывательная. Хорошо всасывается эфир, хлороформ. Возможен ингаляционный путь введения паров и аэрозолей ряда лекарственных веществ. 7. Очистительная. Секреторная деятельность. Активность ресничного эпителия, сосудисто-лимфатический путь. ВЕНТИЛЯЦИЯ ЛЁГКИХ. Осуществляется за счет создания разности давления между альвеолярным и атмосферным воздухом. При вдохе давление в альвеолярном пространстве значительно снижается (за счет расширения грудной полости) и становится меньше атмосферного (на 3-5 мм рт. ст.), поэтому воздух из атмосферы входит в воздухоносные пути. За счет этого совершается обмен газами – кислород входит в альвеолярное пространство, а углекислый газ выходит из него. При выдохе давление вновь выравнивается, т.е. давление в альвеолярном пространстве приближается к атмосферному или даже становится выше его (форсированный выдох), что приводит к удалению очередной порции воздуха из легких. Внутриплевральное давление меньше атмосферного: на вдохе на 4-9 мм рт.ст., на выдохе на 2-4 мм рт.ст.. При спокойном вдохе и выдохе через легкие проходит около 500 мл воздуха (ДО). Из них часть заполняет анатомическое мертвое пространство (около 175 мл). До основной среды доходит около 325 мл воздуха. В среднем акт дыхания совершается за 4-6 с. Акт вдоха проходит несколько быстрее, чем акт выдоха. За минуту совершается 12-16 дыхательных циклов. Через легкое за минуту проходит около 6-8 л воздуха – это минутный объем дыхания (МОД) или легочная вентиляция (ЛВ). При форсированном (глубоком) вдохе человек может дополнительно вдохнуть до 2500 мл. Это резервный объем вдоха (РОВд). Резервный объем выдоха (РОВ) – количество воздуха, которое человек может дополнительно выдохнуть после спокойного выдоха.
Остаточный объем лёгких (ООЛ) – количество воздуха, оставшееся в легких после максимального выдоха. Даже при самом глубоком выдохе в альвеолах и воздухоносных путях остается некоторое количество воздуха. Ёмкости легких: Общая емкость легких (ОЕЛ) – количество воздуха, находящегося в легких после максимального вдоха. Равна сумме – остаточный объем + жизненная емкость легких. Жизненная емкость легких (ЖЕЛ) – наибольшее количество воздуха, которое можно выдохнуть после максимального вдоха. Равна сумме – дыхательный объем + резервный объем вдоха + резервный объем выдоха. У мужчин ростом 180 см – 4,5 л. У пловцов и гребцов до 8,0 л. Резерв вдоха – максимальное количество воздуха, которое можно вдохнуть после спокойного выдоха. Равен сумме – дыхательный объем + резервный объем вдоха. Функциональная остаточная емкость (ФОЕ) – количество воздуха, остающееся в легких после спокойного выдоха. Равен сумме – резервный объем выдоха + остаточный объем. У молодых – 2,4 л и около 3,4 у пожилых. Ключевыми показателями являются – ДО, ЖЕЛ, ФОЕ. У женщин эти показатели, как правило, на 25 % ниже, чем у мужчин. При спокойном дыхании ФОЕ обновляется примерно на 1/7 часть. За счет этого процентное содержание кислорода и углекислого газа (парциальное давление этих газов) сохраняется на постоянном уровне. Задача всех механизмов, участвующих в дыхании, в том числе и регуляторных, - это поддержание постоянства парциального давления кислорода и углекислого газа в альвеолярном пространстве как в покое, так и при любых других условиях.
Дыхательная мускулатура. Акт вдоха (инспирация) – процесс активный. Расширение грудной полости совершается дыхательными мышцами. Главная мышца – диафрагма. При её сокращении уплощается купол диафрагмы, что приводит к увеличению верхне-нижнего размера грудной полости. 70-100% вентиляции легких обеспечивается работой диафрагмальных мышц. При спокойном вдохе участвуют т, акже межхрящевые участки межреберных мышц краниальных межреберий, а также наружные межреберные мышцы. При их сокращении поднимаются ребра и отходит грудина, т.е. увеличиваются размеры грудной полости в передне-заднем и поперечном направлениях. При форсированном вдохе дополнительно включаются лестничная, грудино-ключично-сосцевидная, трапециевидная, большая и малая грудные мышцы, мышцы-разгибатели позвоночника. Акт выдоха (экспирация) в условиях покоя – процесс пассивный. За счет эластической отдачи энергии, которая накопилась во время вдоха при растяжении эластических структур легких, происходит спадение легких на фоне расслабления инспираторной мускулатуры. При форсированном выдохе сокращаются внутренние межреберные мышцы, которые активно уменьшают объем грудной полости и тем самым повышают плевральное давление, т.е. создают в альвеолах более высокое давление, чем в атмосфере. Кроме того, сокращаются мышцы брюшной стенки – косая и прямая мышцы живота, межкостные части внутренних межреберных мышц, а также мышцы, сгибающие позвоночник.
Альфа-мотонейроны диафрагмальной мышцы локализованы в шейных сегментах спинного мозга – С2 - С5. В момент возбуждения нейроны посылают к мышечным волокнам ПД с частотой до 50 Гц и вызывают их тетанус. Мотонейроны межреберных мышц расположены в грудном отделе спинного мозга (Th1 – Th12) и представлены альфа- и гамма-мотонейронами. За счет гамма-мотонейронов происходит оценка степени податливости грудной клетки к растяжению. Когда сила дыхательной мускулатуры недостаточна для акта вдоха, происходит активация проприорецепторов дыхательных мышц, а затем – как следствие – альфа-мотонейронов. (Гамма-мотонейроны регулируют чувствительность этих рецепторов.) Респираторное сопротивление. Состоит из эластического и неэластического. Эластичность включает в себя растяжимость и упругость. Эластические свойства легких обусловлены: 1) эластичностью альвеолярной ткани (35-40 %) и 2) поверхностным натяжением пленки жидкости, выстилающей альвеолы (55-65 %). Растяжимость альвеолярной ткани связана с наличием эластиновых волокон, которые вместе с коллагеновыми волокнами (обеспечивают прочность альвеолярной стенки) образуют спиральную сеть вокруг альвеол. Длина эластиновых волокон при растяжении увеличивается почти в 2 раза, коллагеновых – на 10%. Поверхностное натяжение создаётся за счёт сурфактанта, благодаря которому альвеолы не спадаются. Сурфактант обеспечивает эластичность альвеол. В целом, эластическое сопротивление пропорционально степени растяжения легких при вдохе: чем глубже дыхание, тем больше эластическое сопротивление (эластическая тяга легких). РЕАКТИВНОЕ СОПРОТИВЛЕНИЕ обусловлено: 1) аэродинамическим сопротивлением в дыхательных путях, 2) динамическим сопротивлением перемещающихся при дыхании тканей, 3) инерционным сопротивлением перемещающихся тканей. Основной фактор – аэродинамическое сопротивление. Основное сопротивление, которое испытывает воздух, возникает при прохождении от трахеи до терминальных бронхиол. Именно в этих зонах совершается перемещение воздушного потока путем конвекции. Линейная скорость воздушного потока максимальна в трахее – 98,4 см/с и минимальна в альвеолярных мешках – 0,02 см/с. В альвеолах (респираторной зоне) воздушный поток не движется, а происходит диффузия кислорода, углекислого газа, паров воды по градиенту парциального давления. В этой области воздушные потоки уже не испытывают аэродинамического сопротивления. Газообменная функция легких Газовая смесь в альвеолах, участвующих в газообмене, обычно называется альвеолярным воздухом или альвеолярной смесью газов. Содержание кислорода и углекислого газа в альвеолах зависит прежде всего от уровня альвеолярной вентиляции и интенсивности газообмена. Содержание О2 в альвеолярной смеси – 14 об. %. Содержание СО2 в альвеолярной смеси – 5,6 об. %. Оставшаяся часть альвеолярной газовой смеси приходится на долю азота и очень небольшого количества инертных газов. В атмосферном воздухе содержится 20,9 об. % кислорода, 0,03 об. % углекислого газа и 79,1 об. % азота. В выдыхаемом воздухе содержится 16 об. % кислорода,4,5 об. % углекислого газа и 79,5 об. % азота. Состав альвеолярного воздуха при нормальном дыхании остается постоянным, так как при каждом вдохе обновляется лишь 1/7 часть альвеолярного воздуха. Кроме того газообмен в легких протекает непрерывно, при вдохе и при выдохе, что способствует выравниванию состава альвеолярной смеси. Парциальное давление газов в альвеолах составляют: 100 мм рт.ст. для О2 и 40 мм рт.ст. для СО2. Парциальные давления кислорода и двуокиси углерода в альвеолах зависят от отношения альвеолярной вентиляции к перфузии легких (капиллярный кровоток). У здорового человека в покое это отношение равно 0,9-1,0. В патологических условиях это равновесие может претерпевать значительные сдвиги. При увеличении этого отношения парциальное давление кислорода в альвеолах увеличивается, а парциальное давление углекислого газа – падает и наоборот. Нормовентиляция – парциальное давление углекислого газа в альвеолах поддерживается в пределах 40 мм рт.ст. Гипервентиляция – усиленная вентиляция, превышающая метаболические потребности организма. Парциальное давление углекислого газа меньше 40 мм рт.ст. Гиповентиляция сниженная вентиляция по сравнению с метаболическими потребностями организма. Парциальное давление СО2 больше 40 мм рт.ст. **** Повышенная вентиляция – любое увеличение альвеолярной вентиляции по сравнению с уровнем покоя независимо от парциального давления газов в альвеолах (например: при мышечной работе). Эупноэ – нормальная вентиляция в покое, сопровождающаяся субъективным чувством комфорта. Гиперпноэ – увеличение глубины дыхания, независимо от того, повышена или снижена частота дыхания. Тахипноэ – увеличение частоты дыхания. Брадипноэ – снижение частоты дыхания. Апноэ – остановка дыхания, обусловленная отсутствием стимуляции дыхательного центра (например: при гипокапнии). Диспноэ – неприятное субъективное ощущение недостаточности дыхания или затрудненного дыхания (одышка). Ортопноэ – выраженная одышка, связанная с застоем крови в легочных капиллярах в результате сердечной недостаточности. В горизонтальном положении это состояние усугубляется и поэтому лежать таким больным тяжело. Асфиксия – остановка или угнетение дыхания, связанные главным образом с параличом дыхательного центра. Газообмен при этом резко нарушен: наблюдается гипоксия и гиперкапния. **** Диффузия газов в легких
Парциальное давление кислорода в альвеолах (100 мм рт.ст.) значительно выше, чем напряжение кислорода в венозной крови, поступающей в капилляры легких. Градиент парциального давления углекислого газа направлен в обратную сторону (46 мм рт.ст. в начале легочных капилляров и 40 мм рт.ст. в альвеолах). Эти градиенты давлений являются движущей силой диффузии кислорода и двуокиси углерода, т.е. газообмена в легких. Согласно закону Фика диффузный поток прямо пропорционален градиенту концентрации. Коэффициент диффузии для СО2 в 20-25 раз больше, чем кислорода. При прочих равных условиях углекислый газ диффундирует через определенный слой среды в 20-25 раз быстрее, чем кислород. Именно поэтому обмен СО2 в легких происходит достаточно полно, несмотря на небольшой градиент парциального давления этого газа. При прохождении каждого эритроцита через легочные капилляры время, в течение которого возможна диффузия (время контакта) относительно невелико (около 0,3 с). Однако этого времени вполне достаточно для того, чтобы напряжения дыхательных газов в крови и их парциальное давление в альвеолах практически сравнялись. Диффузионную способность легких, как и альвеолярную вентиляцию, следует рассматривать в отношении к перфузии (кровоснабжению) легких.
Транспорт кислорода кровью. Кривая диссоциации оксигемоглобина, ее характеристика. Факторы, влияющие на образование и диссоциацию оксигемоглобина. Почти во всех жидкостях может содержаться некоторое количество физически растворенных газов. Содержание растворенного газа в жидкости зависит от его парциального давления. Хотя содержание в крови О2 и СО2 в физически растворенном состоянии относительно невелико, это состояние играет существенную роль в жизнедеятельности организма. Для того, чтобы связаться с теми или иными веществами, дыхательные газы сначала должны быть доставлены к ним в физически растворенном виде. Таким образом, при диффузии в ткани или кровь каждая молекула О или СО определенное время пребывает в состоянии физического растворения. Большая часть кислорода переносится кровью в виде химического соединения с гемоглобином. 1 моль гемоглобина может связать до 4 молей кислорода, а 1 грамм гемоглобина – 1,39 мл кислорода. При анализе газового состава крови получают несколько меньшую величину (1,34 – 1,36 мл О2 на 1 г. Hb). Это обусловлено тем, что небольшая часть гемоглобина находится в неактивном виде. Таким образом, ориентировочно можно считать, что in vivo 1г Hb связывает 1,34 мл О2 (так называемое число Хюфнера). Исходя из числа Хюфнера, можно, зная содержание гемоглобина, вычислить кислородную емкость крови: [О2] макс = 1,34 мл О2 на 1 г Hb; 150 г Hb на 1 л крови = 0,20 л О2 на 1 л крови. Однако, такое содержание кислорода в крови может достигаться лишь в том случае, если кровь контактирует с газовой смесью с высоким содержанием кислорода (РО2 = 300 мм рт.ст.), поэтому в естественных условиях гемоглобин оксигенируется не полностью. Реакция, отражающая соединения кислорода с гемоглобином подчиняется закону действующих масс. Это означает, что отношение между количеством гемоглобина и оксигемоглобина зависит от содержания физически растворенного О2 в крови; последнее же пропорционально напряжению О2. Процентное отношение оксигемоглобина к общему содержанию гемоглобина называется насыщением гемоглобина кислородом. В соответствии с законом действующих масс насыщение гемоглобина кислородом зависит от напряжения О2. Графически эту зависимость отражает так называемая кривая диссоциации оксигемоглобина. Эта кривая имеет S – образную форму. Наиболее простым показателем, характеризующим расположение этой кривой, служит так называемое напряжение полунасыщения РО2, т.е. такое напряжение О2, при котором насыщение гемоглобина кислородом составляет 50 %. В норме РО2 артериальной крови составляет около 26 мм рт.ст. Конфигурация кривой диссоциации оксигемоглобина имеет важное значение для переноса кислорода кровью. В процессе поглощения кислорода в легких напряжение О2 в крови приближается к парциальному давлению этого газа в альвеолах. У молодых людей РО2 артериальной крови составляет около 95 мм рт.ст. При таком напряжении насыщение гемоглобина кислородом равно примерно 97 %. С возрастом (и в еще большей степени при заболеваниях легких) напряжение О2 в артериальной крови может значительно снижаться, однако, поскольку кривая диссоциации оксигемоглобина в правой части почти горизонтальна, насыщение крови кислородом уменьшается ненамного. Так, даже при падении РО2 в артериальной крови до 60 мм рт.ст. насыщение гемоглобина кислородом равно 90 %. Таким образом, благодаря тому, что области высоких напряжений кислорода соответствует горизонтальный участок кривой диссоциации оксигемоглобина, насыщение артериальной крови кислородом сохраняется на высоком уровне даже при существенных сдвигах РО2.
Крутой наклон среднего участка кривой диссоциации оксигемоглобина свидетельствует о благоприятной ситуации для отдачи кислорода тканям. В состоянии покоя РО2 в области венозного конца капилляра равно приблизительно 40 мм рт.ст., что соответствует примерно 73 % насыщения. Если в результате увеличения потребления кислорода его напряжение в венозной крови падает лишь на 5 мм рт.ст., то насыщение гемоглобина кислородом снижается на 75 %: высвобождающийся при этом О2 может быть сразу же использован для процессов метаболизма. Несмотря на то, что конфигурация кривой диссоциации оксигемоглобина обусловлена главным образом химическими свойствами гемоглобина, существует и ряд других факторов, влияющих на сродство крови к кислороду. Как правило, все эти факторы смещают кривую, увеличивая или уменьшая ее наклон, но не изменяя при этом ее S-образную форму. К таким факторам относятся температура, рН, напряжение СО2 и некоторые другие факторы, роль которых возрастает в патологических условиях. Равновесие реакции оксигенации гемоглобина зависит от температуры. При понижении температуры наклон кривой диссоциации оксигемоглобина увеличивается, а при ее повышении – снижается. У теплокровных животных этот эффект проявляется только при гипотермии или лихорадочном состоянии. Форма кривой диссоциации оксигемоглобина в значительной степени зависит от содержания в крови ионов Н+. При снижении рН, т.е. закислении крови, сродство гемоглобина к кислороду уменьшается, и кривая диссоциации оксигемоглобина называется эффектом Бора. РН крови тесно связано с напряжением СО2 (РСО2): чем РСО2 выше, тем рН ниже. Увеличение напряжения в крови СО2 сопровождается снижением сродства гемоглобина к кислороду и уплощение кривой диссоциации НbО2. Эту зависимость также называют эффектом Бора, хотя при подобном количественном анализе было показано, что влияние СО2 на форму кривой диссоциации оксигемоглобина нельзя объяснить только изменением рН. Очевидно, сам углекислый газ оказывает на диссоциацию оксигемоглобина «специфический эффект». При ряде патологических состояний наблюдаются изменения процесса транспорта кислорода кровью. Так, есть заболевания (например, некоторые вида анемий), которые сопровождаются сдвигами кривой диссоциации оксигемоглобина вправо (реже – влево). Причины таких сдвигов окончательно не раскрыты. Известно, что на форму и расположение кривой диссоциации оксигемоглобина оказывают выраженное влияние некоторые фосфорорганические соединения, содержание которых в эритроцитах при патологии может изменяться. Главным таким соединением является 2,3-дифосфоглицерат – (2,3 – ДФГ). Сродство гемоглобина к кислороду зависит также от содержания в эритроцитах катионов. Необходимо отметить также влияние патологических сдвигов рН: при алкалозе поглощение кислорода в легких в результате эффекта Бора увеличивается, но отдача его тканям затрудняется; а при ацидозе наблюдается обратная картина. Наконец, значительный сдвиг кривой влево имеет место при отравлении угарным газом. Регуляция дыхания Регуляцию дыхания можно определить как приспособление внешнего дыхания к потребностям организма. Главное в регуляции дыхания – обеспечить смену дыхательных фаз. Чрезвычайно важно, чтобы деятельность дыхательной системы была адекватна метаболическим потребностям организма в целом. Так, при физической работе скорость поглощения кислорода и удаления углекислого газа должна возрастать в несколько раз по сравнению с покоем. Для этого необходимо увеличить вентиляцию легких. Увеличение минутного объема дыхания может быть достигнуто путем повышения частоты и глубины дыхания. Регуляция дыхания должна обеспечивать наиболее экономичное соотношение между этими двумя параметрами. Кроме того, при осуществлении некоторых рефлексов (например: глотательного, кашлевого, чихательного), а также определенных видов деятельности, характерных для человека (речи, пения и т.д.), характер дыхания должен оставаться более или менее постоянным. Учитывая все это разнообразие запросов организма для оптимального функционирования дыхательной системы необходимы сложные регуляторные механизмы. В системе управления дыханием можно выделить два основных контура: 1. Саморегуляторный, действующий на уровне системы, который включает дыхательный центр посредством активации механорецепторов легких, дыхательных мышц, центральных и периферических хеморецепторов. Данный уровень регуляции осуществляет поддержание постоянства газового состава артериальной крови. 2. Регуляторный, корректирующий – включает сложные поведенческие условные и безусловные акты. На уровне регуляторного контура происходят процессы, приспосабливающие дыхание к изменяющимся условиям окружающие среды и жизнедеятельности организма.
Саморегуляторный контур В продолговатом мозге были обнаружены скопления нейронов, отвечающих за частоту, глубину и длительность вдоха и выдоха. Данная нейрональная ассоциация получила название ДЫХАТЕЛЬНЫЙ ЦЕНТР. Дыхательный центр делят на три области по преобладанию нейронов, выполняющих специфические функции: 1. «Центр вдоха» совпадает с ростральным отделом обоюдного ядра. Здесь располагаются инспираторные нейроны (α - нейроны), разряжающиеся незадолго до вдоха и во время самого вдоха. α - нейроны обладают автоматией, очень чувствительны к возбуждению и углекислому газу; 2. «Центр выдоха» располагается вдоль обоюдного ядра. Здесь обнаружены экспираторные нейроны; 3. в медиальной инспираторной области, расположенной вдоль одиночного тракта, были обнаружены как α - нейроны, возбуждающиеся при вдохе, так и β – нейроны. Активность β – нейронов увеличивается при максимальном растяжении легких. Полагают, что при активации β – нейроны оказывают тормозное влияние на α – нейроны. Как следует из приведенных выше данных, ритмическое чередование вдоха и выдоха связано с попеременными разрядами инспираторных и экспираторных нейронов. Во время активности инспираторных нейронов экспираторные клетки «молчат», и наоборот. Это позволяет предположить, что инспираторные и экспираторные клетки оказывают друг на друга реципрокное тормозное влияние. Инспираторные нейроны возбуждаются при постоянном поступлении ритмических импульсов с центральных и периферических хеморецепторов. Активность данных рецепторов находится в прямой зависимости от содержания в крови кислорода и углекислого газа (периферические хеморецепторы) и концентрации ионов водорода в ликворе (центральные хеморецепторы). Потоки импульсов от α- инспираторных нейронов устремляются к ядрам дыхательных мышц спинного мозга, и, активируя их вызывают сокращение диафрагмы и увеличение объема грудной клетки, а также возбуждают β – инспираторные нейроны. Одновременно, в процессе увеличения объема грудной клетки, нарастают потоки импульсов от механорецепторов легких на β – нейроны. Предполагают, что β – инспираторные нейроны возбуждают инспираторно – тормозящие нейроны замыкающиеся на α – инспираторных нейронах. Как следствие происходит прекращение вдоха и наступает выдох. Феномен раздражения рецепторов растяжения легких и прекращение вдоха получило название – инспираторно – тормозящий рефлекс Геринга и Брейера. Напротив, если существенно уменьшить объем легких, то произойдет глубокий вдох. Дуга этого рефлекса начинается от рецепторов растяжений легочной паренхимы (подобные рецепторы обнаружение в трахее, бронхах и бронхиолах. Некоторые из этих рецепторов реагируют на степень растяжения легочной ткани, другие только при уменьшении или увеличении растяжения (независимо от степени)). Афферентные волокна от рецепторов растяжения легких идут в составе блуждающих нервов, а эфферентное звено представлено двигательными нервами, идущими к дыхательной мускулатуре. Физиологическое значение рефлекса Геринга-Брейера состоит в ограничении дыхательных экскурсий, благодаря рефлексу достигается соответствие глубины дыхания сиюминутными условиям функционирования организма, при котором работа дыхательной системы совершается более экономично. Кроме того, рефлекс препятствует перерастяжению легких. Уменьшение при вдохе объема легких снижает поток импульсов с механорецепторов на β – инспираторные нейроны и вновь наступает вдох. Принудительное увеличение времени выдоха (например, при раздувании легких в период экспирации) продлевает время возбуждения рецепторов растяжения легких, и как следствие, задерживает наступление следующего вдоха – экспираторно облегчающий рефлекс Геринга-Брейера. Таким образом, чередование вдоха и выдоха происходит по принципу отрицательной обратной связи. Регуляторный контур Как мы уже отметили, основой активности α – инспираторных нейронов является постоянная активирующая импульсация от центральных и периферических хеморецепторов. Роль ведущих возбуждающих агентов указанных рецепторных образований выполняют СО2 и О2 в крови, а также концентрация протонов в ликворе. Однако, на уровне регуляторного контура осуществляется опережающая регуляция дыхания без изменения газового состава в крови (стресс, эмоциональные состояния, творческий подъем, и т.д.). В отличие от саморегуляторного уровня, контролируемого гуморальными агентами, а регуляторном преобладающее влияние приобретает центральная нервная система.
Физиология системы дыхания Дыхание (respiration) – многоплановый термин, конкретное содержание которого зависит от области применения и контекста. В биоэнергетике дыхание рассматривается как процесс внутриклеточного освобождения энергии при разложении органических соединений и выработки АТФ. В биохимии дыхание исследуется как многоступенчатый ферментативный процесс окисления субстратов, протекающий на последовательно расположенных в мембранах клеточных органелл (митохондрии) ферментных комплексах дыхательной цепи, направляющих поток электронов на конечный акцептор. Если в качестве акцептора выступают нитриты, сульфиты или другие неорганические соединения, то такое дыхание называется анаэробным. Если в качестве конечного акцептора используется молекула кислорода – то говорят об аэробном дыхании. Часть освобожденной в процессе дыхания энергии затрачивается на активный транспорт и создание электрохимических градиентов на мембранах, часть рассеивается в виде тепла, часть аккумулируется в форме высокоэнергетических соединений. В физиологии термином дыхания обозначают процесс газообмена между организмом и средой его обитания, сопровождающийся поглощением кислорода, выделением углекислого газа и метаболической воды. У одноклеточных и ряда беспозвоночных, не имеющих специализированных образований для газообмена, осуществляется прямое дыхание через покровы без каких-либо движений и изменений объема тела. С увеличением массы тела в процессе эволюции возникают специализированные органы дыхания, имеющие развитую поверхность (жабры, легкие) и вспомогательные образования (дыхательные мышцы, осуществляющие принудительную вентиляцию), обеспечивающие непрямое дыхание. Наиболее часто под термином «дыхание» подразумевают периодическое движение грудной клетки, изменяющие ее объем и вызывающие возвратно-поступательное движение воздуха в дыхательных путях (респирация). Однако это лишь легко наблюдаемое проявление процесса вентиляции легких. В случае легочного дыхания выделяется 5 основных этапов процесса дыхания: 1) внешнее дыхание, или вентиляция легких – обмен газов между альвеолами л
|
|||||||||
Последнее изменение этой страницы: 2016-12-30; просмотров: 388; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.223.129 (0.02 с.) |