Временное, нормативное и расчетное сопротивление древесины. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Временное, нормативное и расчетное сопротивление древесины.



За исходные характеристики прочности древесины принимаются показатели временного сопротивления, полученные на основании испытаний малых образцов из чистой древесины или крупных образцов из пиломатериалов и круглого леса. Второй способ не применим при определении прочностных характеристик в реальных конструкциях, когда невозможно выпилить крупные образцы.

На основании проведенных испытаний малых образцов строится гистограмма, а затем график распределения прочности, который подчиняется нормальному закону распределения Гаусса. По графику определяется среднее временное сопротивление (предел прочности) по формуле . СНиП II-25-80 рекомендует определять с обеспеченностью 95%, при этом, учитывая опыт эксплуатации, - величина, зависящая от принятого уровня обеспеченности и вида функции плотности распределения показателей. Тогда нормативные значения малых образцов из чистой древесины определяются из условия

,

где - коэффициент вариаций; - среднеквадратичное отклонение;

отклонение от среднеарифметического значения; число образцов.

Переход от показателей прочности малых стандартных образцов из чистой древесины к прочности натуральных пиломатериалов осуществляется путем введения соответствующих понижающих коэффициентов, учитывающих влияние пороков и увеличение размеров рабочего сечения .

Коэффициенты и определяются на основании полученных опытным путем зависимостей:

1. с учетом расположения сучков отношение площадей при сжатии и растяжении; отношение моментов инерции при изгибе. Найденные значения зависят не только от сортности материала, но и от вида напряженного состояния и изменяются в пределах от 0,2 до 0,78.

2. по данным сравнительных испытаний малых и больших образцов из чистой древесины. Значения коэффициента колеблются в пределах от 0,6 до 0,95.

Нормативное сопротивление натуральных сортных лесоматериалов находится из равенства

Учитывая, что доверительная вероятность (обеспеченность) расчетного сопротивления должна быть выше, чем нормативного сопротивления (по СНиП 99%), вводится коэффициент надежности. Расчетное сопротивление определится по формуле

,

где коэффициент надежности по материалу, учитывающий отклонение в сторону меньших значений прочности материала с более высокой обеспеченностью, чем нормативные значения.

коэффициент, учитывающий степень ответственности строительного объекта;

mдл - коэффициент, учитывающий влияние длительности приложения нагрузки, т.е. коэффициент перехода от прочности древесины при кратковременных испытаниях к ее прочности в условиях длительно действующих постоянных и временных нагрузок за весь срок службы конструкций (mдл=0,66).

Влияние на прочность материала условий эксплуатации и особенностей работы, отличающихся от принятых для базовых расчетных сопротивлений, учитывается умножением на коэффициенты условий работы:

коэффициент, учитывающий различную прочность древесины разных пород, отличающихся от прочности сосны и ели;

коэффициенты, учитывающие температурно-влажностный режим эксплуатации, в зависимости от которого все здания и сооружения делятся на категории: отапливаемые помещения с температурой до 35°С с различной влажностью, внутри не отапливаемых помещений с различной влажностью; на открытом воздухе; повышенная влажность;

и коэффициенты, учитывающие характер и режим нагружения;

и влияние размеров сечения и его составных частей;

и влияние начальных напряжений, концентрации напряжений;

снижение прочности древесины при пропитке некоторыми защитными средствами.

 

 

7. Расчёт цельных элементов на центральное сжатие.

На сжатие работают стойки, подкосы, верхние пояса и отдельные стержни ферм. В сечениях элемента от сжимающего усилия N, действующего вдоль его оси, возникают почти одинаковые по величине сжимающие напряжения σ (эпюра прямоуголная).

Стандартные образцы при испытании на сжатие имеют вид прямоугольной призмы с размерами, указанными на рис. 2.

Древесина работает на сжатие надежно, но не вполне упруго. Примерно до половины предела прочности рост деформаций происходит по закону близкому к линейному, и древесина работает почти упруго. При росте нагрузки увеличение деформаций все более опережает рост напряжений, указывая на упруго-пластический характер работы древесины.

Разрушение образцов без пороков происходит при напряжениях, достигающих 44 МПа, пластично, в результате потери устойчивости ряда волокон, о чем свидетельствует характерная складка. Пороки меньше снижают прочность древесины, чем при растяжении, поэтому расчетное сопротивление реальной древесины при сжатии выше и составляет для древесины 1 сорта Rс=14÷16 МПа, а для 2 и 3 сортов эта величина немного ниже.

Расчет на прочность сжатых элементов производится по формуле:

, где Rс – расчетное сопротивление сжатию.

Аналогичным образом рассчитываются и сминаемые по всей поверхности элементы. Сжатые стержни, имеющие большую длину и не закрепленные в поперечном направлении должны быть, помимо расчета на прочность, рассчитаны на продольный изгиб. Явление продольного изгиба заключается в том, что гибкий центрально-сжатый прямой стержень теряет свою прямолинейную форму (теряет устойчивость) и начинает выпучиваться при напряжениях, значительно меньших предела прочности. Проверку сжатого элемента с учетом его устойчивости производят по формуле:

σ , где – расчетная площадь поперечного сечения, φ – коэффициент продольного изгиба. принимается равной:

1. При отсутствии ослаблений = ,

2. При ослаблениях, не выходящих на кромки, если площадь ослаблений не превышает 25% , = ,

3. То же, если площадь ослаблений превышает 20% , =4/3 ,

 

1. При симметричных ослаблениях, выходящих на кромки = ,

При несимметричном ослаблении, выходящем на кромки, элементы рассчитывают как внецентренно сжатые.

Коэффициент продольного изгиба φ всегда меньше 1, учитывает влияние устойчивости на снижение несущей способности сжатого элемента в зависимости от его расчетной максимальной гибкости λ.

Гибкость элемента равна отношению расчетной длины l0 к радиусу инерции сечения элемента:

; .

Расчетную длину элемента l0 следует определять умножением его свободной длины l на коэффициент μ0:

l0=l μ0, где коэффициент μ0 принимается в зависимости от типа закрепления концов элемента:

- при шарнирно закрепленных концах μ0=1;

- при одном шарнирно закрепленном, а другом защемленном μ0=0,8;

- при одном защемленном, а другом свободном нагруженном конце μ0=2,2;

- при обоих защемленных концах μ0=0,65.

Гибкость сжатых элементов ограничивается с тем, чтобы они не получились недопустимо гибкими и недостаточно надежными. Отдельные элементы конструкций (отдельные стойки, пояса, опорные раскосы ферм и т.п.) должны иметь гибкость не более 120. Прочие сжатые элементы основных конструкций – не более 150, элементы связей – 200.

При гибкости более 70 (λ>70) сжатый элемент теряет устойчивость, когда напряжения сжатия в древесине еще невелики и она работает упруго.

Коэффициент продольного изгиба (или коэффициент устойчивости), равный отношению напряжения в момент потери устойчивости σкр к пределу прочности при сжатии Rпр, определяют по формуле Эйлера с учетом постоянного отношения модуля упругости древесины к пределу прочности:

, где А=3000 – для древесины, А=2500 – для фанеры.

При гибкостях, равных и меньших 70 (λ≤70) элемент теряет устойчивость, когда напряжения сжатия достигают упругопластической стадии и модуль упругости древесины понижается. Коэффициент продольного изгиба при этом определяют с учетом переменного модуля упругости по упрощенной теоретической формуле:

, где

=0,8 – коэффициент для древесины;

=1 – коэффициент для фанеры.

При подборе сечения используют формулу расчета на устойчивость, предварительно задаваясь величиной λ и φ.

 

 



Поделиться:


Последнее изменение этой страницы: 2017-01-19; просмотров: 1514; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.63.90 (0.011 с.)