При расчете ребристой клеефанерной балки выполняют следующие проверки. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

При расчете ребристой клеефанерной балки выполняют следующие проверки.



 

1. Проверка нормальных напряжений в поясах из древесины и фанерной стенке балки производится на действие максимального изгибающего момента по формулам:

- для растянутого пояса

,

- для сжатого пояса

,

здесь φ – коэффициент продольного изгиба,

- для фанерной стенки

,

mф – коэффициент, учитывающий снижение сопротивления фанеры в стыке «на ус» (для обычной фанеры m=0.6, для бакелизированной 0.8)

2. Проверка прочности фанерных стенок на совместное действие касательных и нормальных напряжений с учетом анизотропии фанеры, т.е. проверка по главным напряжениям в зоне перехода от поясов к стенкам

,

σр – главные напряжения,

σст, τст – нормальные и касательные напряжения в стенке на том же уровне,

Rфα – расчетное сопротивление фанеры растяжению под углом α, определяются по графику приложения 5 СНиП,

α – угол наклона направления главного напряжения к оси балки, определяется из зависимости .

Проверка на скалывание между слоями шпона в местах приклейки стенок к поясам

(0.6 МПа)

Sn – статический момент пояса относительно оси балки,

Σbш – суммарная ширина клеевых швов приклейке поясов к стенкам, Σbш=nhn (hn – высота пояса, n – число вертикальных швов)

Rфск – расчетное сопротивление фанеры скалыванию.

Проверка фанерной стенки на срез (у опор) по нейтральной оси

Sпрф – приведенный к фанере статический момент половины поперечного сечения балки относительно ее оси,

Σδф – суммарная толщина фанерных стенок.

Проверка стенки на местную устойчивость (в середине приопорной панели)

Для обеспечения устойчивости стенки при продольном расположении волокон относительно оси балки должно быть hст/δ≤50, где hст – высота стенки в середине опорной панели, δ – толщина стенки.

Если hст/δ>50, то должна быть выполнена проверка на местную устойчивость.

Расчет устойчивости следует производить по формуле:

Здесь Кu, Кδ – коэффициенты, определяемые по графикам СНиП,

hст – высота стенки между внутренними гранями полок, hрасч= hст при а≥ hст,

hрасч= а при а< hст, а – расстояние между ребрами в свету.

 

«Расстановка ребер жесткости»

Здесь δст, τст – нормальные и касательные напряжения в середине опорной панели, знаменатели (в формуле проверки устойчивости стенки) – это критические напряжения, при которых стенка теряет устойчивость.

Расчет по прогибам

,

Клеефанерная балка с волнистой стенкой относится к классу малогабаритных балок. Пояса состоят из одиночных досок 2-го сорта. Они располагаются горизонтально плашмя, и в их плоскостях образуется волнистые по длине клиновидного сечения.

Фанерная стенка имеет волнистую форму, вклеиваются краями в пазы.

 

«Клеефанерная балка с волнистой стенкой»

Благодаря волнистой форме стенка лучше сопротивляется потере устойчивости, чем плоская.

Расчет плоских балок производится с учетом того, что стенка практически не работает на нормальные напряжения при изгибе и эти напряжения воспринимаются только поясами. Кроме того благодаря своей форме стенка является податливой, поэтому расчет таких балок по прочности и прогибам при изгибе производят как составных балок с податливой стенкой.

 

Дощатоклееные балки.

Дощатоклееные балки применяют, главным образом, в качестве основных несущих конструкций покрытия сельских, общественных и промышленных зданий, используют их также в виде прогонов, пролеты и нагрузки которых не позволяют применять прогоны цельного сечения, а также в виде главных балок перекрытий, мостов и других сооружений.

В отечественной практике строительства дощатоклееные балки находят применение в покрытиях пролетом до 18 м. За рубежом имеются примеры эффективного применения дощатоклееных балок в покрытиях пролетом до 30 м и более.

Дощатоклееные балки могут быть:

 

1) односкатными постоянной высоты;

2) двускатными переменного сечения, причем h0 не менее 0.4h, где h0 – высота балки у опоры, h – высота в середине пролета;

3) ломаными, состоящими из двух прямолинейных элементов, соединенных в коньке зубчатым соединением;

 

 

 

4) гнутыми;

 

 

Балки склеиваются из досок толщиной не более 42 мм (для гнутоклееных – не более 33 мм). Сечения дощатоклееных балок принимают в большинстве случаев шириной не более 17 см, что позволяет изготовлять их из цельных по ширине досок. Балки большей ширины изготовляют из менее широких досок, склеенных между собой кромками с расположением стыков вразбежку, что увеличивает трудоемкость их изготовления. Формы поперечных сечений балок могут быть весьма разнообразными. Традиционными формами сечения являются прямоугольное массивное, реже двутавровое или тавровое (т.к.они не технологичны в изготовлении).

«Виды сечений дощатоклееных балок»

 

Высота балок (h) принимается в пределах h=(1/8…1/12)l.

Для обеспечения устойчивости балок из их плоскости отношение высоты балки h к ширине b не должно быть больше 6 (h/b≤6). Дощатоклееные балки с большим отношением высоты к ширине поперечного сечения подлежат проверке на общую устойчивость.

Доски располагаются по высоте сечения балок таким образом, чтобы древесина наиболее высокого качества размещалась в наиболее напряженных нижней и верхней зонах.

«Расположение досок в балке»

По длине доски дощатоклееных балок стыкуются на зубчатый шип. Стыки смежных слоев должны располагаться вразбежку на расстоянии не менее 30 см.

Расчет дощатоклееных балок покрытий.

В большинстве случаев расчет производят по схеме однопролетной свободно опертой балки на равномерную нагрузку q от собственной массы покрытия, балки и массы снега.

Дощатоклееные балки рассчитывают как балки цельного сечения. За основное расчетное сопротивление при изгибе принимается для сосны

1 сорта Ru=14 МПа

2 сорта Ru=13 МПа

3 сорта Ru=8.5 МПа

При расчете дощатоклееных балок выполняют следующие проверки.

1. Проверка прочности по нормальным напряжениям:

Здесь введены коэффициенты к моменту сопротивления:

mδ – коэффициент условий работы, учитывающий влияние размеров поперечного сечения на несущую способность балки, его значение приведено в СНиП II-25-80 в зависимости от высоты сечения h

h=70 см → mδ=1,

h<70 см → mδ >1,

h>70 см → mδ <1;

mф – коэффициент формы, для балок прямолинейной формы сечения mф =1, для балок двутавровых сечений mф даны в учебнике Г. Г. Карлсена в зависимости от отношения ширины стенки к ширине пояса.

Расчетное сечение, где действуют максимальные нормальные напряжения, в балках переменной высоты не совпадает, как в балках постоянной высоты, с местом действия максимального изгибающего момента, поскольку момент сопротивления сечений уменьшается у них от середины балки быстрее, чем изгибающий момент. Расстояние расчетных сечений от опор Х определяется путем отыскания максимума эпюры нормальных напряжений по длине балки.

Это сечение находится из общего выражения для нормальных напряжений

Для нахождения экстремальных точек эпюры напряжений необходимо приравнять нулю выражение, полученное после дифференцирования выражения для σu.

В двускатной балке переменного сечения при равномерно распределенной нагрузке

,

где hоп – высота опорного сечения,

h – высота сечения в середина пролета балки.

Изгибающий момент в этом случае равен

«Эпюра изгибающего момента М»

В гнутоклееных балках дополнительно проверяется еще и напряжения растяжения в гнутой зоне.

2. Расчет на устойчивость плоской формы деформирования изгибаемых элементов.

,

где М – максимальный изгибающий момент на рассматриваемом участке lp

mδ и mф – балочный коэффициент и коэффициент формы (применяются такими же, как и при расчете прочности).

3. Проверка прочности по скалывающим напряжениям в сечении с максимальной поперечной силой выполняется по формуле Журавского

,

где Q – поперечная сила, Sбр – статический момент относительно нейтральной оси той части площади сечения, которая расположена выше или ниже проверяемого шва, Jбр – момент инерции сечения, b – ширина балки, и при двутавровом сечении – ширина стенки (b=bст).

4. Расчет по прогибам.

СНиП II-25-80 дает формулу для определения наибольшего прогиба шарнирно-опертых балок в виде:

,

где f0 – прогиб балки постоянного сечения высотой h без учета деформаций сдвига, для загруженной равномерно-распределенной нагрузкой

,

h – наибольшая высота сечения,

l – пролет балки,

k – коэффициент, учитывающий влияние переменности высоты сечения, для балки постоянного сечения k=1,

с – коэффициент, учитывающий влияние деформации сдвига от поперечной силы.

Значение коэффициентов k и с для основных расчетных схем балок даны в приложении СНиП.

При проверке балки по прогибам должно выполняться условие

,

Кроме основных проверок в ряде случаев выполняются дополнительные проверки. К таким проверкам относятся проверка на смятие опорной площадки балки, проверка напряжений растяжения в гнутых балках и т.п.

Кроме однопролетных балок в ряде случаев с эффектом применяют многопролетные и консольные дощатоклееные балки. Расчет таких балок производится по общим принципам строительной механики с учетом формы и высоты сечения (коэффициентов mδ и mф).

В случае, если необходимо повысить несущую способность и жесткость балки иногда выполняют армирование дощатоклееных балок.

Дощатоклееные армированные балки представляют собой деревянные клееные балки, в которые вклеиваются стержни стальной арматуры.

«Дощатоклееная армированная балка»

Целесообразно выполнять армирование двойной арматурой классов A-III и A-IV. Процесс армирования находится в пределах 2…4 %. Клей чаще всего эпоксидно-цементный.

Расчет армированных балок на изгиб производится с учетом совместной работы клееной древесины и арматуры методом приведенных сечений, учитывающим модуль упругости древесины и стали.

Расчет армированных балок по прочности производят исходя из того, что древесина разрушается раньше, чем стальная арматура:

 

23. Деревянные прогоны.

24,25. Обеспечение жесткости прогонных и беспрогонных решений.

Стропильные конструкции покрытия из соображений экономии материала проектируют с сечениями, развитыми в плоскости действия основных нагрузок – от собственного веса и снега. Это обуславливает их относительно низкую изгибную жесткость из плоскости и жесткость на кручение. Поэтому при проектировании покрытий уделяется особое внимание обеспечению устойчивости и жесткости всей системы покрытия в целом с помощью связей, на которые возлагается также задача восприятия возможных горизонтальных нагрузок: ветровой на торцы зданий, тормозных сил от кранового оборудования, сейсмических усилий. Для зданий с деревянными каркасами связи в покрытиях проектируются в плоскостях сжатых верхних поясов стропильных ферм, верхних граней стропильных арок или балок. Связи по верху стропильных конструкций образуются из продольных элементов и раскосов которые вместе со стропильными конструкциями образуют поперечные связевые фермы (в качестве продольных элементов используют прогоны или распорки). Для обеспечения пространственной жесткости зданий существуют два решения:

1- прогонное (в холодных зданиях) – Ставят из досок связи (скатные связи), там, где заканчивается одна – начинается другая, при шаге 4-6м, связевой блок ставится через 24-30м. Если покрытие проектируется с применением плит, в качестве продольных элементов для раскрепления стропильных конструкций применяют деревянные распорки, которые обычно идут на всю длину покрытия, а в пределах связевой фермы являются стойками ее решетки.

2 - беспрогонное – ставят распорки, распорка должна образовывать квадрат, между ними - крестовые связи (два тяжа диаметром 16-18мм). При беспрогонном решении покрытия наиболее часто проектируют связевые фермы с перекрестной решеткой из стальных тяжей, имеющих натяжные муфты. При меньшем шаге возможно проектирование раскосной и треугольной решеток.

 

Решетка проектируется симметричной относительно конька. Каркас торцевых стен зданий может быть самостоятельной конструктивной системой состоящей из шарнирно опертых на фундаменты стоек и обвязок, объединяющих стойки в каркас и воспринимающих нагрузки от конструкций покрытий. При большой высоте стоек их раскрепляют в плоскости торца горизонтальными распорками.

 

При расстановке связей вдоль здания следует учитывать согласованность их расположения в покрытиях и в продольных каркасах по колоннам имея ввиду что большинство горизонтальных нагрузок воспринимается поперечными связевыми фермами покрытий и передается на фундаменты через вертикальные связи в плоскостях колонн. Поэтому все связи должны располагаться в одном шаге осей, образуя замкнутый контур от одного до другого фундаментов. Расстановка вдоль здания должна быть симметричной относительно середины длины здания, равномерной, расстояние между связями должно быть не менее 24 метров.

26. Клееные фермы.

Фермы применяют, как правило, в статически определимых схемах в отношении как опорных закреплений, так и решения решетки.

В зависимости от конструктивных особенностей, связанных с методом изготовления, фермы подразделяют на фермы заводского (из клееных элементов) и построечного изготовления (из цельных элементов)

Наибольшее распространение в строительстве получили фермы заводского изготовления. К ним относятся металлодеревянные фермы, верхний пояс и сжатые стержни решетки которых выполнены из клееной древесины, а нижний пояс и растянутые стержни решетки - из стали.

Преимущества клееной древесины позволяют применять в случае необходимости, например, в условиях агрессивных сред, не только стальной, но и деревянный нижний пояс.

По очертанию фермы подразделяются на:

1. Треугольные;

2. Трапециевидные;

3. Многоугольные;

4. Сегментные.

Расчет ферм.

1. статический расчет;

2. подбор сечения элементов фермы;

3. расчет узлов.

Расчету ферм предшествует сбор нагрузок. Нагрузки, действующие на ферму, складываются из постоянных (от собственной массы фермы и ограждающих конструкций покрытия) и временной (чаще всего только от снега).

Статический расчет фермы сводится к определению усилий от внешних нагрузок в элементах фермы. Для всех стержней определяется значение продольной силы N, а для верхнего пояса еще и изгибающий момент M.

Усилия определяют отдельно:

1) для случая загружения снеговой равномерно распределенной нагрузкой на половине пролета;

2) для случая загружения снеговой нагрузкой на всем пролете;

3) для случая загружения постоянной нагрузкой (собственный вес фермы и вес ограждающих конструкций покрытия) на всем пролете фермы.

Целесообразно сначала определить усилие от единичной нагрузки, а затем, умножив на величины фактических нагрузок, получить истинное значения усилий в стержнях.

При вычислении усилий в средних раскосах учитывают два случая: когда раскос сжат и когда растянут.

Расчетные усилия в стержнях определяются при следующих двух комбинациях нагрузок:

1) Равномерно распределенная постоянная нагрузка на всем пролете, временная (снег) - на половине пролета фермы.

2) Равномерно распределенная постоянная и временная нагрузки на всем пролете фермы.



Поделиться:


Последнее изменение этой страницы: 2017-01-19; просмотров: 671; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.175.180 (0.065 с.)