Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Характеристики исполнительных элементов микрореле, изготовленных с учетом предложенных технологических и конструктивных решенийСодержание книги
Поиск на нашем сайте
В результате проведенной работы оптимизирована технология изготовления тонких слоистых исполнительных элементов микрореле методом многоуровневой поверхностной микрообработки кремния в части операции гальванического осаждения (рис. 3.1 – г). Рис. 3.7. Основные этапы формирования исполнительного элемента микрореле: а) термоокисление; б) формирование нижнего электрода методами магнетронного распыления и гальванического осаждения; в) нанесение «жертвенного» слоя; г) изготовление подвижного элемента методом гальванического осаждения; д) плазмохимическое травление «жертвенного» слоя. И оптимизирована конструкция исполнительного элемента в части выбора жесткости упругого подвеса. Исполнительные элементы предлагается изготавливать на основе гальванических пленок золота с прослойкой никеля между ними, а нижний электрод – на основе слоев гальванической меди, никеля и золота. В работе проведены исследования морфологии пленок гальванического никеля, меди и золота с целью улучшения планаризации и адгезионных характеристик структурных слоев, а также экспериментально выбраны оптимальные по механическим характеристикам режимы и условия гальванического осаждения никеля из сульфаминовокислого электролита, обеспечивающие минимальную шероховатость при микротвердости порядка 10 ГПа: плотность тока на катоде – 1 А/дм2; скорость осаждения никеля – 0.095 мкм/мин; температура электролита – 55..60 градусов Цельсия; кислотность электролита pH=3, шероховатость Ra – от 50 до 180 нм при толщинах 1–6 мкм. Предложенная технология гальванического осаждения обеспечивает следующие параметры: величина зазора между подложкой и балочным подвижным элементом – от 1.8 до 10 мкм; толщина балочного подвижного элемента – от 1 до 7 мкм; средняя шероховатость никеля из сульфаминовокислого электролита (Ra) составляет 70–240 нм, меди из пирофосфатного электролита – от 10 до 90 нм, золота из фосфатного электролита – от 30 до 120 нм. Экспериментально установлено, что средняя микрошероховатость поверхности линейно возрастает с увеличением толщины. Таким образом: 1. Сформулированы рекомендации по преодолению физико-технологических ограничений микромеханических реле на основе слоистых исполнительных элементов. Для устранения гистерезиса рекомендуем подключать к микрореле параллельные емкости и последовательные резисторы, для борьбы с залипанием предлагаем проводить планаризацию в процессе изготовления и усиливать жесткость конструкции. Для снижения управляющего напряжения предлагаем понижать жесткость конструкции, изменяя толщину прослойки никеля. Согласно проведенной расчетно-экспериментальной оценке при уменьшении толщины никелевой прослойки с 3.5 мкм до 0.5 мкм, напряжение срабатывания снижается на 50%. Необходимо учитывать, что при ослаблении жесткости конструкции увеличивается риск залипания электродов. 2. Выбраны оптимальные режимы гальванического осаждения, обеспечивающие формирование подвижных элементов на основе гальванических пленок золота толщиной по 1 мкм и прослойки гальванического никеля разной толщины между ними со следующими характеристиками: Таблица 3.1. Характеристики слоистых исполнительных элементов микрореле.
В продолжении работы можно провести расчетно-экспериментальные оценки минимальной жесткости конструкции, требуемой для того, чтобы исполнительный элемент смог преодолеть силы межмолекулярного взаимодействия с поверхностью нижнего электрода после того, как управляющее напряжение будет снято. Это позволит рассмотреть проблемы залипания электродов и высокого напряжения срабатывания как функции жесткости и решать их в рамках одной задачи. ЗАКЛЮЧЕНИЕ 1. На основе анализа принципа действия типовых конструкций микрореле показано, что конструктивные особенности микромеханических реле, изготовленных по поверхностной технологии позволяют: снизить себестоимость и вносимые энергопотери; обеспечить высокое отношение емкостей во включенном и выключенном состояниях; получить добротность того же порядка, что и у существующих аналогов, таких как диод Шотки, MOSFET, PIN-диод. Рассмотрены основные методы изготовления микрореле. Приведены основные технологические операции в процессе формирования микроструктур методом поверхностной микрообработки. 2. Выявлены основные физико-технологические ограничения при изготовлении микрореле: скорость переключения; напряжение срабатывания; залипание электродов; а также, ограничения за счет механических и физико-химических свойств материалов. Определена критическая операция в процессе изготовления микрореле – гальваническое осаждение. 3. Проведена экспериментальная работа для исследования характеристик гальванических пленок никеля, меди, золота и слоистых исполнительных элементов устройств МСТ на их основе в зависимости от технологии изготовления и типа конструкции: 3.1. Выбраны оптимальные по механическим характеристикам режимы и условия гальванического осаждения никеля из сульфаминовокислого электролита, обеспечивающие минимальную шероховатость при твердости покрытия 20–50 ГПа: плотность тока – 1 А/дм2; скорость осаждения никеля – 0.095 мкм/мин; температура электролита – 55..60 градусов Цельсия; кислотность электролита pH=3. 3.2. Исследована микрошероховатость пленок никеля, меди и золота, полученных при оптимальных режимах. Показано, что шероховатость покрытий возрастает с увеличением толщины. Для никеля из сульфаминовокислого электролита составляет 70–240 нм при толщине пленки от 1 до 6 мкм; для меди из пирофосфатного электролита – 10 до 90 нм при толщине пленки до 6 мкм; для золота – от 30 до 120 нм при толщине пленки от 1 до 6 мкм. 3.3. Выбраны толщины функциональных слоев исполнительного элемента, обеспечивающие минимальную шероховатость: 2 мкм – толщина медного покрытия на нижнем электроде, 1 мкм – толщина нижнего и верхнего золотого слоя в «сандвич-структуре» исполнительного элемента, 0.5 мкм – толщина никелевой прослойки в исполнительном элементе. 4. Сформулированы рекомендации по снижению влияния физико-технологических ограничений: изготавливать подвижный элемент с помощью многоуровневой поверхностной технологии с нанесением никеля, меди и золота гальваническим способом, используя экспериментально определенные режимы гальванического осаждения. Предложен способ борьбы с высоким управляющим напряжением и залипанием электродов микромеханических реле. 5. Выбранные режимы гальванического осаждения обеспечивают формирование подвижных элементов устройств микросистемной техники на основе системы металлов «золото-никель-золото» при суммарной толщине золотых покрытий 2 мкм и толщине никелевой прослойки 0.5–3.5 мкм со следующими характеристиками: морфология контактов верхнего электрода 7–20 нм, нижнего электрода 70–240 нм; жесткость конструкции 70–310 кН/м; критическое напряжение срабатывания 40–90 В; давление срабатывания 320–1320 кПа. ПРИЛОЖЕНИЯ
|
||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2017-01-19; просмотров: 132; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.28.97 (0.009 с.) |