Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Как решить систему линейных уравнений?↑ ⇐ ПредыдущаяСтр 3 из 3 Содержание книги
Поиск на нашем сайте
Что значит решить систему линейных уравнений? Решить систему уравнений – это значит найти такие значения переменных, которые обращают КАЖДОЕ уравнение системы в верное равенство. После того, как решена ЛЮБАЯ система уравнений ЛЮБЫМ способом, настоятельно рекомендую выполнить проверку на черновике или калькуляторе. Правило Крамера. А сейчас мы разберём правило Крамера, а также решение системы линейных уравнений с помощью обратной матрицы (матричный метод). Для того чтобы освоить данный параграф Вы должны уметь раскрывать определители «два на два» и «три на три». Переходим к рассмотрению правила Крамера для системы трех уравнений с тремя неизвестными: Находим главный определитель системы: Если D=0, то система имеет бесконечно много решений или несовместна (не имеет решений). В этом случае правило Крамера не поможет/ Если D≠0, то система имеет единственное решение и для нахождения корней мы должны вычислить еще три определителя:
И, наконец, ответ рассчитывается по формулам:
Пример Решить систему по формулам Крамера. Решение: Решим систему по формулам Крамера.
значит, система имеет единственное решение. Ответ: .. Собственно, здесь опять комментировать особо нечего. Но есть пара замечаний. Бывает так, что в результате вычислений получаются «плохие» несократимые дроби, например: . Я рекомендую следующий алгоритм «лечения». Если под рукой нет компьютера, поступаем так: 1) Возможно, допущена ошибка в вычислениях. Как только Вы столкнулись с «плохой» дробью, сразу необходимо проверить, правильно ли переписано условие. Если условие переписано без ошибок, то нужно пересчитать определители, используя разложение по другой строке (столбцу). 2) Если в результате проверки ошибок не выявлено, то вероятнее всего, допущена опечатка в условии задания. В этом случае спокойно и ВНИМАТЕЛЬНО прорешиваем задание до конца, а затем обязательно делаем проверку и оформляем ее на чистовике после решения. Время от времени встречаются системы в уравнениях которых отсутствуют некоторые переменные, например: Здесь в первом уравнении отсутствует переменная , во втором – переменная . В таких случаях очень важно правильно и ВНИМАТЕЛЬНО записать главный определитель: – на месте отсутствующих переменных ставятся нули. Решение системы с помощью обратной матрицы Пример Решить систему матричным методом Решение: Запишем систему в матричной форме: AX=b, где Пожалуйста, посмотрите на систему уравнений и на матрицы. По какому принципу записываем элементы в матрицы, думаю, всем понятно. Единственный комментарий: если бы в уравнениях отсутствовали некоторые переменные, то на соответствующих местах в матрице A нужно было бы поставить нули. . Согласно формуле нам нужно найти обратную матрицу и выполнить матричное умножение . Алгоритм нахождения обратной матрицы подробно разобран в разделе «Как найти обратную матрицу?» Обратную матрицу найдем по формуле: , где – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы A. Сначала разбираемся с определителем: Теперь нужно вычислить 9 миноров и записать их в матрицу миноров Справка: Полезно знать смысл двойных подстрочных индексов в линейной алгебре. Первая цифра – это номер строки, в которой находится данный элемент. Вторая цифра – это номер столбца, в котором находится данный элемент: То есть, двойной подстрочный индекс указывает, что элемент находится в первой строке, третьем столбце, а, например, элемент находится в 3 строке, 2 столбце. В ходе решения расчет миноров лучше расписать подробно.
Порядок расчета миноров совершенно не важен, здесь я их вычислил слева направо по строкам. Можно было рассчитать миноры по столбцам (это даже удобнее). Таким образом: – матрица миноров соответствующих элементов матрицы A. – матрица алгебраических дополнений. – транспонированная матрица алгебраических дополнений. Теперь записываем обратную матрицу: Ни в коем случае не вносим в матрицу, это серьезно затруднит дальнейшие вычисления. Деление нужно было бы выполнить, если бы все числа матрицы делились на 60 без остатка. А вот внести минус в матрицу в данном случае очень даже нужно, это, наоборот – упростит дальнейшие вычисления. Обратите внимание, что деление на 60 выполняется в последнюю очередь. Ответ: .
|
||||
Последнее изменение этой страницы: 2016-12-14; просмотров: 415; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.189.192.214 (0.01 с.) |