Рентгенодиагностический аппарат, принцип действия, основные типы, характеристика рентгеновского излучения.




ЗНАЕТЕ ЛИ ВЫ?

Рентгенодиагностический аппарат, принцип действия, основные типы, характеристика рентгеновского излучения.



Рентгенодиагностические аппараты в зависимости от конструкции и условий эксплуатации разделяют на стационарные, передвижные и переносные. Стационарные Р. а. предназначены для эксплуатации в специально оборудованных помещениях. К ним относятся, например, рентгенодиагностический комплекс «Рентген-50-2» на 3 рабочих места, РУМ-20М на 2 рабочих места, рентгенодиагностический телеуправляемый комплекс «Рентген-100Т») для проведения полного объема рентгенодиагностических исследований. Передвижные Р. а. бывают трех типов: перевозимые на специальных автомобилях, например флюорографы; разборные полевые, например РУМ-24, предназначенные для исследования больных и раненых в военно-полевых, экспедиционных и экстремальных условиях; палатные, например 12П6, используемые для рентгенодиагностики в условиях стационара, вне рентгеновского отделения. Переносные рентгенодиагностические аппараты, например аппарат 9Л5, импульсный аппарат «Дина-2», используют для рентгенодиагностики на дому, в полевых условиях.

Рентгенодиагностические аппараты могут быть общего назначения и специализированные. Последние по методам и условиям исследования подразделяют на флюорографические, например флюорографы 12Ф7, 12Ф7-Ц с 70 и 100 мм фотокамерами, главным образом для массовых профилактических исследований, томографические, стимуляторы для планирования лучевой терапии, для работы в операционных, например аппарат хирургический передвижной 10×4, и др. По области применения различают Р. а. для ангиографии, для нейрорентгенодиагностики, урологических исследований, маммографии , дентальные, в т.ч. панорамные — ортопантомографы.

На принципиальной блок-схеме рентгенодиагностического аппарата указаны основные его элементы. Питающее напряжение подается в регулятор напряжения, включение которого на заданную длительность экспозиции осуществляют с помощью реле времени. Повышение и выпрямление напряжения для питания рентгеновской трубки осуществляется в генераторном устройстве (размещено в стальном баке, заполненном трансформаторным маслом), содержащем одно- или трехфазный повышающий трансформатор и выпрямители. Высокое напряжение от генераторного устройства подается на рентгеновскую трубку с помощью высоковольтных кабелей, имеющих наружную заземляемую оболочку. Рентгенодиагностическая трубка — электровакуумный прибор с источником излучения электронов (катод) и мишенью, в которой они тормозятся (анод). Энергия для нагрева катода подается через трансформатор накала, размещаемый к баке генераторного устройства. Накаленная спираль катода испускает электроны, которые ускоряются приложенным к трубке высоким напряжением, а затем тормозятся вольфрамовой пластинкой анода с образованием рентгеновского излучения. Площадь анода, на которую попадают электроны, называют фокусом. Различают одно- или двухфокусные аноды. В аноде свыше 95% энергии электронов превращается в тепловую энергию, нагревающую анод до 2000° и более. По этой причине с увеличением длительности экспозиции допустимая мощность снижается. Рентгенодиагностическая трубка размещается в кожухе, заполненном трансформаторным маслом, со свинцовой оболочкой для защиты от неиспользуемого излучения. В кожухе имеются также гнезда для присоединения высоковольтных кабелей и выходное окно, через которое выводится рабочий пучок излучения. В разборных, палатных, дентальных Р. а. рентгеновская трубка находится в защитном кожухе вместе с генераторным устройством, что часто называют моноблоком.

К выходному окну излучателя крепятся устройства, формирующие пучок излучения с требуемыми параметрами. Имеется также оптический имитатор для освещения белым светом поверхности, площадь которой соответствует площади рабочего пучка излучения, и набор сменных фильтров для изменения энергетического спектра излучения.

В зависимости от назначения современные Р. а. снабжаются разнообразными штативно-механическими устройствами — напольно-потолочными (или потолочными) штативами, столами и стойками для снимков поворотными столами-штативами для просвечивания и снимков, обеспечивающими проведение соответствующих рентгенологических исследований.

Существуют специальные штативы для томографии, рентгенокимографии, нейрорентгенодиагностики, катетеризации, ангиографии и других исследований, различающиеся диапазоном взаимных перемещений излучателя, пациента и приемника излучения и особыми устройствами.

Экраноснимочное приспособление современного стационарного Р. а. включает экран для просвечивания, перемещаемый кассетодержатель с кассетой, тубус, защитные устройства, отсеивающий растр и устройство программного управления, обеспечивающее возможность получения на одной рентгенографической пленке в процессе просвечивания последовательно нескольких снимков меньшего формата (так называемых прицельных снимков). Отсеивающий растр (отсеивающая решетка) представляет собой набор тонких чередующихся полос из рентгенопрозрачного и рентгенопоглощающего материала, ориентированных на фокус рентгеновской трубки. Растр устанавливается между пациентом и приемником излучения и служит для уменьшения влияния на качество изображения вторичного (рассеянного) излучения. В большинстве современных диагностических Р. а между растром и кассетой с рентгенографической пленкой располагается камера рентгеноэкспонометра — прибора, который автоматически отключает напряжение на рентгеновской трубке при накоплении пленкой экспозиционной дозы излучения, обеспечивающей заданное значение плотности ее почернения после фотографической обработки. В отечественной рентгеновской аппаратуре применяются рентгеноэкспонометры ионизационного типа РЭР-3, РЭР-3БМ-50-20, которые автоматически, под действием ионизации воздуха, подают в реле времени сигнал на отключение аппарата.

Рентгеновская кассета обычно заряжается рентгенографической пленкой между двумя усиливающими экранами. Свечение усиливающих экранов под действием рентгеновского излучения в 60—100 раз повышает чувствительность рентгенографической пленки (при этом снижается доза радиационной нагрузки на пациента), фотографический эмульсионный слой которой состоит из микроскопических кристаллов бромистого серебра в желатине. Получают распространение малосеребряные и бессеребряные способы регистрации рентгеновского изображения с использованием специальных полупроводниковых преобразователей.

Для медицинских усиливающих экранов используют вольфраматные, цезиевые, лантановые, иттриевые люминофоры — вещества, светящиеся под действием рентгеновского излучения. Так,лантановые усиливающие экраны применяют для рентгенографии желудочно-кишечного тракта, поясничного отдела позвоночника, мочевыделительной системы, иттриевые — для исследования сердца и крупных сосудов. При некоторых исследованиях, не требующих особой резкости изображения (например, при рентгенографии костей), производят съемку без экранов.

Для визуализации рентгеновского изображения при просвечивании используют флюоресцентный экран, аналогичный усиливающему экрану, который защищен свинцовым стеклом. В современных Р. а. вместо экранов применяют электронно-оптические усилители рентгеновского изображения с телевизионным видеоконтрастным устройством, основной частью которых является электронно-оптический преобразователь, позволяющий многократно увеличивать яркость изображения, а дозу излучения снижать в 4—5 раз. При этом существенно улучшается выявление мелких деталей рентгеновского изображения, отпадает необходимость в затемнении помещения процедурной и затрат времени на адаптацию зрения врача. Фокусирующая система обеспечивает передачу изображения на выходной экран с минимальными искажениями, а затем через оптическую систему на телевизионную передающую трубку и экран видеоконтрольного устройства. Одновременно изображение может регистрироваться фото- или кинокамерой, записываться на видеомагнитофонную ленту.

Все шире в Р. а. применяют средства цифровой регистрации рентгеновских изображений. В этих случаях видеосигнал телевизионной передающей трубки поступает в аналого-цифровой преобразователь, а с него в электронную память, что позволяет в ряде случаев заменить непрерывное просвечивание импульсным и существенно снизить дозу облучения, как это делается, например в рентгеновских аппаратах для операционных.

Применение в Р. а. средств вычислительной техники позволяет производить преобразования изображения: выделение малых контрастов, подчеркивание контуров, фильтрацию. С помощью вычислительной техники осуществляется так называемая субтракционная цифровая ангиография, когда производят цифровое вычитание двух изображений, полученных в разные фазы введения контрастного вещества в кровеносную систему. При этом одинаковые элементы изображения исчезают, а движение контрастного вещества по сосудам становится отчетливо видимым

 

 


16. Рентгеноскопия, принцип метода, показания и области применения.

Рентгеноскопия(анг. fluoroscopy), (рентгеновское просвечивание) — классическое определение — метод рентгенологического исследования, при котором изображение объекта получают на светящемся (флюоресцентном) экране.

С момента открытия рентгеновского излучения для рентгеноскопии применялся флюоресцентный экран, представлявший собой в большинстве случаев лист картона с нанесенным на него специальным флюоресцирующим веществом. В современных условиях применение флюоресцентного экрана не обосновано в связи с его малой светимостью, что вынуждает проводить исследования в хорошо затемненном помещении и после длительной адаптации исследователя к темноте (10-15 минут) для различения малоинтенсивного изображения. Вместо классической рентгеноскопии применяется рентгенотелевизионное просвечивание, при котором рентгеновские лучи попадают на УРИ (усилитель рентгеновского изображения), в состав последнего входит ЭОП (электронно-оптический преобразователь). Получаемое изображение выводится на экран монитора. Вывод изображения на экран монитора не требует световой адаптации исследователя, а также затемненного помещения. В дополнение, возможна дополнительная обработка изображения и его регистрация на видеопленке или памяти аппарата. Также рентгенотелевизионное просвечивание позволяет существенно снизить дозу облучения исследователя за счет вынесения рабочего места за пределы комнаты с рентгеновским аппаратом.

Главным преимуществом перед рентгенографией является факт исследования в реальном масштабе времени. Это позволяет оценить не только структуру органа, но и его смещаемость, сократимость или растяжимость, прохождение контрастного вещества, наполняемость. Метод также позволяет достаточно быстро оценить локализацию некоторых изменений, за счет вращения объекта исследования во время просвечивания (многопроекционное исследование).

Рентгеноскопия широко используется при исследованиях ЖКТ, дыхательных путей, костной системы. Она дает возможность оценить перистальтику пищевода и желудка и установить наличие препятствий для прохождения пищи (в ЖКТ), с ее помощью определяют точку, через которую наиболее безопасно извлечь жидкость из полости плевры, покрывающей легкие (при пункции плевральной полости). Показания к рентгеноскопии пищевода – подозрение на диафрагмальную грыжу и рефлюкс-эзофагит, определение распространённости опухоли (выявленной на ЭГДС), стенозы и ожоги пищевода, подозрение на перфорацию пищевода. Показания к рентгеноскопии желудка и двенадцатипёрстной кишки – язвенная болезнь желудка и двенадцатипёрстной кишки, определение распространённости опухоли желудка (выявленной при ЭГДС), контрольное исследование после оперативных вмешательств на верхних отделах ЖКТ.

 





Последнее изменение этой страницы: 2016-12-14; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.236.156.34 (0.007 с.)