Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Суммирование чисел по формату с фиксированной запятой

Поиск

Сложение. С помощью двоичного сумматора по разрядам.

0+0=0

0+1=1

1+0=1

1+1=0 (и перенос единицы в старший разряд)

ai+bii-1=cii

ai,bi - i-ый разряд слагаемых a,b

Пi-1- перенос из i-1-го разряда

ci- результат в i-том разряде

Пi-перенос из i–го в i+1-ый

 

 

Вычитание.

Оно выполняется на том же сумматоре. А-В=А+(-B)=C

Отрицательные числа при этом представляются в виде обратного или дополнительного кода.

Если А,В>0 то преобразование в обратный и дополнительный код не производится.

Правило получения обратного кода.

Все разряды кроме знакового инвертируется при сложении по формуле +(-В) разряд переполнения не исчезает, а циклически

Переносится

 

 

48-49….

Прямой код двоичного числа - это само двоичное число, в котором все цифры, изображающие его значение, записываются как в математической записи, а знак числа записывается двоичной цифрой.

При этом никакого символа, отделяющего эту цифру от старшей цифры, используемой при изображении его величины, не допускается. В таких случаях говорят о том, что назначение цифры в коде определяется его позицией.

Примеры.

Изображаемое число Код

* +1101 (+13) 0000 1101 В примерах коды

* +1011101 (+93) 0101 1101 изображаются

* 1101 (-13) 1000 1101 восемью цифрами

 

Прямой код почти не отличается от принятого в математике: для выявления абсолютной величины (модуля) числа, надо отбросить цифру, обозначающую его знак.

Однако применительно к операциям сложения и вычитания такой код неудобен: правила счета для положительных и отрицательных чисел различаются. Чтобы прояснить это обстоятельство, представим что длина кода (слова) равна 5 двоичным разрядам и запишем несколько чисел в нем:

 

Число -2 -1   +1 +2
Код          

 

Как видно из примера, при использовании прямого кода при переходе значения число через ноль, происходит скачкообразное изменение кода! Поэтому построение устройства, в котором должны выполняться такие действия арифметики, как сложение чисел с разными знаками и вычитание, становится сложной задачей.

Прямой код используется при хранении чисел в памяти ЭВМ, а также при выполнении операций умножения и деления.

Чтобы построить более простые схемы АЛУ предложены и активно применяются обратный и дополнительный коды.

Обратный код положительного числа совпадает с прямым, а при записи отрицательного числа все его цифры, кроме цифры, изображающей знак числа, заменяются на противоположные (0 заменяется на 1, а 1 - на 0).

 

Примеры записи.

Изображаемое число Код

* +1101 (+13) 0000 1101 В примерах коды

* +1011101 (+93) 0101 1101 изображаются

* 1101 (-13) 1111 0010 восемью цифрами

Сопоставление этой записи с прямым кодом показывает, что непосредственно восстановить абсолютную величину (модуль) отрицательного числа непросто. Однако, в этом коде как к положительным, так и к отрицательным числам можно применять одни и те же правила, а операцию А-В можно заменить операцией сложения чисел А и “минус В”.

Посмотрим, как представляется последовательные числа при переходе через ноль:

Число -2 -1   +1 +2
Код          

Из примера видно, что переход через ноль также не выглядит естественным. Отмеченная особенность влечет за собой и следующее - в обратном коде ноль изображают две различающиеся комбинации: 00000 (+0) и 11111 (-0), что усложняет аппаратную реализацию операций.

Для восстановления прямого кода отрицательного числа из обратного кода надо все цифры, кроме цифры, изображающей знак числа, заменить на противоположные.

 

Дополнительный код положительного числа совпадает с прямым, а код отрицательного числа образуется как результат увеличения на 1 его обратного кода.

 

Иными словами, процесс построения дополнительного кода отрицательного числа можно разбить на два этапа - построить обратный код, а затем из него построить дополнительный.

Проиллюстрируем это на примере.

Число -> - 101101

Прямой код -> 1101101

Обратный код -> 1010010

+1

Дополнительный -> 1010011

Примеры записи.

Изображаемое число Код

* +1101 (+13) 0000 1101 В примерах коды

* +1011101 (+93) 0101 1101 изображаются

* 1101 (-13) 1111 0011 восемью цифрами

В дополнительном коде, в отличие от обратного, ноль изображается только одной комбинацией, и кроме этого, достаточно естественно получается переход через ноль, если иметь в виду, что любое число, большее другого на 1, получается при прибавлении к этому другому 1 по правилам сложения. Применительно к дополнительному коду это именно так, если принять к сведению, что разрядность слова фиксирована, и единица переноса из старшего разряда теряется, поскольку ее некуда записать:

2 -> 11101 + 1 = 11110

1 -> 11110 + 1 = 11111

0 -> 11111 + 1 = (1)00000 (перенос отбрасывается)

+1 -> 00000 + 1 = 00001

+2 -> 00001 + 1 = 00010

 

Вычитание чисел

 

Сложение и вычитание чисел в обратном и дополнительном кодах выполняется с использованием обычного правила арифметического сложения многоразрядных чисел. Общей для этих кодов особенностью является лишь то, что при поразрядном сложении чисел разряды, изображающие знаки чисел рассматриваются как равноправные разряды двоичного числа, которые складываются друг с другом и с единицей переноса из предыдущего разряда числа по обычным правилам арифметики. Различия же обратного и дополнительного кодов связаны с тем, что делается с единицей переноса из старшего разряда (изображающего, как неоднократно говорилось, знак числа).

При сложении чисел в дополнительном коде единица переноса из старшего разряда игнорируется (теряется), а в обратном коде эту единицу надо прибавить к младшему разряду результата.

Пример 1. Сложить числа +12 и -5.

а) В обратном коде

Десятичная форма -> +12 -5

Двоичная форма -> +1100 -101

Прямой код -> 00001100 10000101

Обратный код -> 11111010

Выполним сложение в столбик:

0 0 0 0 1 1 0 0

1 1 1 1 1 0 1 0

===============

(1) 0 0 0 0 0 1 1 0

+ 1 (Добавление 1 переноса)

==============

0 0 0 0 0 1 1 1

Итак, результат в обратном коде = 00000111.

 

 

Поскольку знаковый разряд равен 0, результат положительный, и, следовательно, запись кода числа совпадает с записью прямого кода. Теперь можно восстановить алгебраическую запись результата. Он равен +111 (незначащие нули отброшены), или в десятичной форме +7.

Проверка (+12-5=+7) показывает, что результат верный.

а) В дополнительном коде

Десятичная форма -> +12 -5

Двоичная форма -> +1100 -101

Прямой код -> 00001100 10000101

Обратный код -> 11111010

+1

Дополнительный код -> 11111011

 

Выполним сложение в столбик:

0 0 0 0 1 1 0 0

1 1 1 1 1 0 1 1

============

(1) 0 0 0 0 0 1 1 1

(Перенос игнорируется)

Итак, результат в дополнительном коде = 00000111.

Поскольку знаковый разряд равен 0, результат положительный, и, следовательно, запись кода числа совпадает с записью прямого кода. Теперь можно восстановить алгебраическую запись результата. Он равен +111 (незначащие нули отброшены), или в десятичной форме +7.

Проверка (+12-5=+7) показывает, что результат верный.

Умножение и деление двоичных чисел производится в ЭВМ в прямом коде, а знаки их используются лишь для определения знака результата. Также как и в математике, умножение сводится к операциям сложения и сдвига. Деление выполняется за счет комбинирования сдвигов, вычитаний (в этот момент могут использоваться обратный или дополнительный коды) и сложений.

 



Поделиться:


Последнее изменение этой страницы: 2016-12-17; просмотров: 294; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.144.132 (0.006 с.)