Основные методы интегрирования. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основные методы интегрирования.



Непосредственное интегрирование.

Непосредственное интегрирование предполагает использование свойств неопределенного интеграла, таблицы интегралов и различных формул из элементарной математики.

 

Пример. .

Решение. Воспользуемся формулой сокращенного умножения (квадрат суммы), свойствами степеней, свойствами 3-4 и формулой 1 таблицы интегралов:

 

 

Замена переменной.

Пусть требуется найти интеграл с непрерывной подынтегральной функцией .

Сделаем замену переменных, положив , где функция удовлетворяет следующим двум условиям:

1) - непрерывная функция;

2) - непрерывно дифференцируемая функция, имеющая обратную функцию.

Тогда .

После интегрирования возвращаются к старой переменной обратной подстановкой.

Пример. .

Решение.

.

 

Пример. .

Решение.

.

 

Интегрирование по частям.

Интегрированием по частям называется нахождение интеграла по формуле:

,

где и — непрерывно дифференцируемые функции от . С помощью этой формулы нахождение интеграла сводится к отысканию другого интеграла . Ее применение целесообразно в тех случаях, когда последний интеграл либо проще исходного, либо ему подобен.

Применяется формула в следующих случаях:

1) Подынтегральная функция является произведением многочлена на показательную или тригонометрическую функцию.

Это интегралы вида: , , .

В этом случае в качестве выбирается многочлен .

Пример. .

Решение. Подынтегральная функция есть произведение многочлена на тригонометрическую функцию (1 случай). Поэтому в качестве выбирается многочлен.

.

 

2) Подынтегральная функция является произведением многочлена на логарифмическую или обратную тригонометрическую функцию.

Это интегралы вида: , , , , .

В качестве следует принимать обратную тригонометрическую или логарифмическую функцию.

Пример. .

Решение. Подынтегральная функция есть логарифмическая функция (2 случай). Поэтому в качестве выбирается логарифмическая функция.

.

Интегрирование рациональных дробей.

 

Пример. .

Решение. Сначала разложим дробь на простейшие:

.

.

.

Решая систему, получим: .

Тогда исходный интеграл примет вид:

.

 

Пример. .

Решение. Так как дробь является неправильной, то сначала выделим целую часть. В результате получим:

.

Теперь вычислим интеграл:

.

 

Пример. .

Решение. Подынтегральная дробь является правильной, так как степень многочлена в числителе меньше, чем в знаменателе. Разложим дробь на простейшие:

.

.

.

Решая систему, получим: .

Тогда исходный интеграл примет вид:

.

 

 

Интегрирование тригонометрических выражений.

Пример. .

Решение.

.

 

б) Оба числа m, n - четные неотрицательные.

Применим формулы:

.

Пример. .

Решение.

.

 

 



Поделиться:


Последнее изменение этой страницы: 2016-12-17; просмотров: 149; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 34.204.196.206 (0.078 с.)