Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Онтологическое представление содержания знанияСодержание книги
Поиск на нашем сайте
Важнейшим результатом предшествующего анализа было положение о том, что применение действий сопоставления к объектам создает новое содержание; мы изобразили его символами ХΔ1Δ2... Это содержание фиксируется, выражается в знаковой форме (А) (В) и способах оперирования с нею — λ1λ2. Применяя затем другие действия сопоставления к знакам (А) (В), мы получаем новое содержание, которое выражаем в знаках (D) (E) (F) и очень часто относим непосредственно к объекту X. Например, мы измеряем последовательно соответствующие друг другу значения давления и объема определенной массы газа (первая плоскость предмета), получаем ряды значения р1, р2, р3..., V1, V2, V3... (образующих вторую плоскость предмета), затем сопоставляем их как p1V1<->p2V2<->p3V3<->... и находим математическую форму их зависимости pV = const (которая должна быть помещена уже на третьей плоскости предмета). Содержание этой формы мы рассматриваем как «закон», которому подчиняется газ, и, следовательно, относим его непосредственно к нашему объекту. Но нередко такое непосредственное отнесение не может быть выполнено, так как содержание, выявляемое опосредованно из деятельности со знаками, не соответствует эмпирически наблюдаемым или выявляемым свойствам объекта. Тогда для него строят специальное знаковое изображение, которое «встает» как бы между знаковой формой знания и эмпирически данными объектами. Конец страницы 168 ¯ Начало страницы 169 ¯ Если обратиться к приведенной выше схеме «предмета», то ситуацию, в которой вновь полученное знание не удается отнести к объекту, можно будет изобразить в схеме 6. Здесь в очерченном пунктиром прямоугольнике изображен «разрыв», возникший из-за того, что мы не можем отнести результаты, полученные при оперировании в четвертой плоскости знания, непосредственно на объект X. Для ликвидации этого разрыва строится особая знаковая конструкция (на схеме она изображена маленьким квадратом с буквой О в середине), которая должна определенным образом представить предмет «как таковой». Исходя из этой специфической функции, о подобных изображениях можно говорить как об онтологических представлениях содержаний знания. Это точно выражает специфическую познавательную роль таких знаковых конструкций: они должны так представить объект, чтобы обеспечить связь его с вновь полученными знаниями. Именно таким путем появляются так называемые «идеальные предметы» — тяжелая точка, идеальный рычаг, абсолютно упругое тело, математический маятник и др. [Хайкин, 1947]. Рассмотрим в качестве примера «математический маятник». Уравнение его колебаний содержит знаки М — массы маятника и l — его длины. Представим себе, что перед нами реальные маятниковые часы с массивным диском и длинным стержнем. Можно ли применить это математическое уравнение колебаний маятника для описания реального движения маятника часов? Оказывается, что если мы будем измерять его действительные параметры — длину стержня или массу диска, то получим неправильные результаты. Математическое уравнение колебаний маятника может быть отнесено непосредственно лишь к особому идеальному предмету — «математическому маятнику», а он, в свою очередь, может быть представлен только в знаках. Чтобы применить математическое уравнение колебаний маятника к реальному маятнику, последний нужно еще свести к математическому маятнику, а это значит, с помощью особых специально задаваемых процедур измерить и рассчитать так называемые «приведенную длину» и «приведенную массу» реального маятника (см. схему 7). Конец страницы 169 ¯ Начало страницы 170 ¯ Аналогичная картина с онтологическими представлениями обнаруживается и у всех других научных знаний. Онтологическое представление дает вторую форму существования предмету знания: оно как бы «сплющивает» его многоплоскостную структуру в одном изображении. Только теперь, введя эти общеметодологические понятия, мы можем вернуться к проблемам системно-структурного исследования и спросить:
Что такое система?
Термин «система» определяется с помощью таких терминов, как «связь» (или «взаимосвязь»), «элемент», «целое», «единство». В чисто словесных формулировках еще можно встретить согласие, но представители разных наук вкладывают в эти слова столь различный смысл, что на деле согласие их является лишь видимым: для одних «связь» это просто геометрические взаимоотношения частей; для других — зависимость между частями или сторонами целого; одни будут называть «структурой» геометрическое взаимоотношение, другие сведут ее к «набору» элементов. Часто теоретические определения расходятся с эмпирическим материалом. Так, например, известный английский кибернетик Ст.Бир называет системой взаимосвязь самых различных элементов, а в качестве примера приводит бильярд, в котором никаких взаимосвязей фактически нет, а есть только функциональное единство целого [Вир, 1963, с. 22]. Поэтому, наверное, самым правильным было бы сказать, что в настоящее время вообще не существует удовлетворительных, достаточно широко принятых понятий системы и структуры. Не смогло предложить таких понятий и общество по разработке «общей теории систем». Г.Х.Гуд и Р.Э.Макол, анализирующие системы «большого масштаба», отказываются предпринимать какие-либо попытки точно определить границы, очерчивающие рассматриваемые ими системы. «Как обычно бывает в любой области, — замечают они, — эти границы проходят по широким неопределенным территориям и поиски их точного положения вызвали бы большие, но бесплодные споры» [Гуд, Макол, 1962, с. 17]. И фактически выраженная ими позиция является единственной широко распространенной среди тех, кто исследует конкретные системы и структуры. Ее бессмысленно оспаривать, если заранее известно, что в данный момент у ваших оппонентов все равно нет средств, чтобы решить проблему. Но и только. Вряд ли стоит специально доказывать, что неограниченность и расплывчатость исходных понятий крайне затрудняет научное исследование и делает его фактически малопродуктивным. Конец страницы 170 ¯ Начало страницы 171 ¯ Наверное, в этой ситуации полезно поставить вопрос: почему все попытки выделить специфические признаки систем в течение столь долгого времени не дают положительного результата? Ответ на него в каком-то смысле банален: по-видимому, пытаются объединить в одном классе слишком разнородные явления, не видят, ухватившись за формальные и вместе с тем лишь интуитивно понятые характеристики целого и составляющих его элементов, более существенных и глубоких различений, действительно определяющих природу и жизнь «систем». Немалую роль в установке исследовать «системы вообще» играет и ложная методологическая догма, что-де всегда надо стремиться к выделению из массы разнородных явлений общих инвариантов в ущерб эмпирическому движению к деталям и обусловленному им ограничению. По-видимому, здесь единственно эффективным путем теоретической разработки проблемы должен быть путь разграничения и разделения охватываемого исследованием эмпирического материала на более узкие области, выделяемые по каким-то другим, несистемным, но более важным для объектов признакам. В частности, нужно провести исключительно важное и принципиальное различение систем на
«организации» и «структуры»
Даже при наличии всех обычно перечисляемых признаков систем сложные объекты могут не иметь друг с другом ничего общего именно в «системном» отношении. Покажем это на простых моделях. Представим себе деревянную основу, на которой в специально выдолбленных ячейках лежат шарики (схема 8). Шарики прочно занимают свои места и все вместе они образуют строго определенную конфигурацию. Эта конфигурация может быть описана с помощью тех или иных «целостных» характеристик, например, можно установить ее ромбовидный характер. Каждый шарик имеет свое строго определенное место, свою позицию и жестко определен в своем отношении как к целому, так и к другим шарикам. Если убрать один из шариков, то целое, бесспорно, изменится: вместо ромбовидной конфигурации мы будем иметь треугольную. Следовательно, эти четыре шарика образуют некоторое единое целое: изменение места по крайней мере одного шарика или его исчезновение изменяет целое. Но вот важная особенность: изменение в положении одного шарика никак не сказывается на положении других. С изменением положения одного шарика происходит изменение целого, хотя оставшиеся его элементы остаются неизменными. Указанные свойства определяют Конец страницы 171 ¯ Начало страницы 172 ¯ класс систем одного из простейших типов, а именно — организации с отношениями. В такого рода системных образованиях отсутствуют связи. Возьмем другой пример. На такой же самой деревянной основе поместим шарики в той же ромбовидной конфигурации, но, в отличие от первого примера, свяжем их друг с другом и с основой пружинками (схема 9). Когда пружинки уравновешены, вся система покоится и четыре шарика образуют ромбовидную конфигурацию. Изменим положение одного из шариков. При этом, конечно, изменится общая конфигурация системы, но не так, как это было в предыдущем случае: система пружин, выведенная из равновесия в результате изменения положения одного из шариков, придет в движение, все остальные шарики сместятся, появится совершенно новая конфигурация. Как и в первом случае, произошло изменение целого, но теперь уже — за счет изменения положения всех элементов. В этом особенность систем второго типа: их элементы не только относятся друг к другу, но они также и связаны между собой. Именно поэтому изменение положения одного из шариков влечет за собой изменение положения других. Таким образом, в этом случае мы имеем принципиально иной тип систем — системы связей, или структуры. Но это различение типов систем по основанию «отношение — связь» отнюдь не единственное. Не меньшую роль играет также различение их на
|
||||
Последнее изменение этой страницы: 2016-12-15; просмотров: 207; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.143.24.110 (0.009 с.) |