Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Теоремы сложения и умножения вероятностей для совместных и не совместных событий.↑ ⇐ ПредыдущаяСтр 2 из 2 Содержание книги
Поиск на нашем сайте
Умножения: Вероятность произведения двух событий (совместного появления этих событий) равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое событие уже наступило:
Доказательство. Докажем теорему для случая, когда опыт имеет конечное число несовместных равновероятных исходов. Пусть: · событие появилось в исходах опыта; · событие появилось в исходах опыта; · событие появилось в исходах опыта. Вероятность события вычислим по классическому определению. Поскольку событие произошло, то всего возможных в этом случае исходов - ; при этом из этих возможных исходов благоприятны событию те исходы, которые составляют событие , т.е. исходов: , или . Следствие 1. Обобщим теорему на случай трех событий:
Следствие 2. Обобщим теорему на случай событий: в случае произведения нескольких зависимых событий вероятность равна произведению одного из них на условные вероятности всех остальных при условии, что вероятность каждого последующего вычисляется в предположении, что все остальные события уже совершились: . Сложения: Теорема. Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления: Теорема. Вероятность появления одного из двух несовместных событий, безразлично какого, равна сумме вероятностей этих событий: Формула полной вероятности и формула байесса Если событие А может произойти только при выполнении одного из событий , которые образуют полную группу несовместных событий, то вероятность события А вычисляется по формуле . Эта формула называется формулой полной вероятности. Вновь рассмотрим полную группу несовместных событий , вероятности появления которых . Событие А может произойти только вместе с каким-либо из событий , которые будем называть гипотезами. Тогда по формуле полной вероятности Если событие А произошло, то это может изменить вероятности гипотез . По теореме умножения вероятностей , откуда . Аналогично, для остальных гипотез Полученная формула называется формулой Байеса (формулой Бейеса). Основные понятия и формулы комбинаторики.
комбинаторика, - раздел математики, посвященный решению задач выбора и расположения элементов некоторого, обычно конечного, множества в соответствии с заданными правилами. Комбинаторика - один из разделов дискретной математики, который приобрел важное значение в связи с использованием его в теории вероятностей, математической логике, теории чисел, вычислительной технике, кибернетике.
Формула размещения - выборки которые различаются как по составу, так и по расположению элементов. Формула перестановки - выборки, различающиеся только по расположению элементов. Pn = n! Формула сочетания - выборки, которые различаются только по составу (из всей совокупности часть, порядок НЕ важен)
|
|||||
Последнее изменение этой страницы: 2016-12-14; просмотров: 430; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.25.216 (0.005 с.) |