Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Силы гидрофобного взаимодействия.↑ Стр 1 из 9Следующая ⇒ Содержание книги
Поиск на нашем сайте
Критерии вида. Признаки, по которым один вид можно отличить от другого, называют критериями вида. В основе морфологического критерия лежит сходство внешнего и внутреннего строения между особями одного вида. Этот критерий — самый удобный и поэтому широко используется в систематике. Однако особи в пределах вида иногда так сильно различаются, что только по морфологическому критерию не всегда удается определить, к какому виду они относятся. Вместе с тем существуют виды морфологически сходные, но особи этих видов не скрещиваются между собой. Это — виды-двойники, которые исследователи открывают во многих систематических группах. Так, под названием «крыса черная» различают два вида-двойника, имеющих в кариотипах по 38 и 42 хромосомы. Установлено также, что под названием «малярийный комар» существует до 15 внешне неразличимых видов, ранее считавшихся одним видом. Около 5% всех видов насекомых, птиц, рыб, земноводных, червей составляют виды-двойники. В основу физиологического критерия положено сходство всех процессов жизнедеятельности у особей одного вида, прежде всего сходство размножения. Особи разных видов, как правило, не скрещиваются, или потомство их бесплодно. Например, у многих видов мухи дрозофилы сперма особей чужого вида вызывает иммунную реакцию, что приводит к гибели сперматозоидов в половых путях самки. В то же время в природе есть виды, особи которых скрещиваются и дают плодовитое потомство (некоторые виды канареек, зябликов, тополей, ив). Географический критерий основан на том, что каждый вид занимает определенную территорию или акваторию, называемую ареалом. Однако огромное число видов имеет накладывающиеся или перекрывающиеся ареалы. Кроме того, существуют виды, не имеющие четких границ распространения, а также виды-космополиты, обитающие на огромных пространствах суши всех континентов или океана (например, растения — пастушья сумка, одуванчик лекарственный, виды рдестов, ряски, тростника, животные-синантропы — постельный клоп, рыжий таракан, комнатная муха). Поэтому географический критерий, как и другие, не является абсолютным. Экологический критерий основан на том, что каждый вид может существовать только в определенных условиях, выполняя свойственные ему функции в определенном биогеоценозе. Так, например, лютик едкий произрастает на пойменных лугах, лютик ползучий — по берегам рек и канав, лютик жгучий — на заболоченных местах. Существуют, однако, виды, которые не имеют строгой экологической приуроченности. К ним относятся многие сорные растения, а также виды, находящиеся под опекой человека: комнатные и культурные растения, домашние животные. Генетический (цитоморфологический) критерий основан на различии видов по кариотипам, т.е. числу, форме и размерам хромосом. Для подавляющего большинства видов характерен строго определенный кариотип. Однако и этот критерий не является универсальным. Во-первых, у многих видов число хромосом одинаково и форма их сходна. Например, некоторые виды семейства бобовых имеют 22 хромосомы (2п = 22). Во-вторых, в пределах одного и того же вида могут встречаться особи с разным числом хромосом, что является результатом геномных мутаций (поли- или анеу-плоидия). Например, ива козья может иметь диплоидное (38) или тетра-плоидное (76) число хромосом. Биохимический критерий позволяет различать виды по составу и структуре определенных белков, нуклеиновых кислот и др. Особи одного вида имеют сходную структуру ДНК, что обусловливает синтез одинаковых белков, отличающихся от белков другого вида. Вместе с тем у некоторых бактерий, грибов, высших растений состав ДНК оказался очень близким. Следовательно, есть виды-двойники и по биохимическим признакам. Репродуктивная изоляция – это неспособность двух разных видов при скрещивании давать плодовитое потомство. В целом изолирующие механизмы подразделяются на два основных типа. К первому относят предзиготические механизмы, т. е. предшествующие образованию зиготы, создающие препятствия для спаривания особей, относящихся к разным популяциям. Предзиготическая изоляция включает в себя физические преграды (река, океан) между двумя популяциями, этологические различия (в поведении), а также различия в процессе деления клеток, которые приводят к несовместимостям между популяциями. Ко второму типу относят постзиготические механизмы, действующие после образования зиготы, приводящие к снижению жизнеспособности или плодовитости гибридного потомства. Если оплодотворение происходит, существуют препятствия для образования гибридов: Первый барьер — гаметический — после слияния гамет образовавшаяся клетка не делится и погибает. Второй барьер — зиготический — зигота образуется и быстро погибает. Третий — на стадии эмбриона илиличинки — происходит спонтанный выкидыш плода. Четвёртый — нежизнеспособность гибридов — потомство оказывается слабым, не справляется с факторами окружающей среды и погибает. Пятый барьер — стерильность гибридов — потомство не даёт собственного потомства. 8. Роль белков в жизнедеятельности клетки. Химическая организация белка, структура белковой молекулы, разнообразие и специфичность белков. Функции белков в организме разнообразны. Они в значительной мере обусловлены сложностью и разнообразием форм и состава самих белков. Каталитическая. Белки — катализаторы, увеличивающие скорость химических реакций в клетках организма. Ферменты — биологические катализаторы; Структурная. Белки — элементы плазматической мембраны, а также хрящей, костей, перьев, ногтей, волос, всех тканей и органов; Абсолютно все белки, несмотря на свои различия, состоят из одного и того же «строительного материала» – особых химических веществ – аминокислот. В природе существует порядка 170 аминокислот, но в состав белков чаще всего входят только двадцать. Для каждого белка характерна уникальная, свойственная только ему комбинация аминокислот и их число. Перестановка всего лишь одного аминокислотного звена на другое место, его потеря или замена приведет к значительному изменению свойств. В строении молекул белков различают четыре уровня организации: Первичная структура — полипептидная цепь из аминокислот, связанных в определенной последовательности ковалентными (прочными) пептидными связями. Вторичная структура — полипептидная цепь, закрученная в тугую спираль. В ней между пептидными связями соседних витков (и другими атомами) возникают малопрочные водородные связи. В комплексе они обеспечивают довольно прочную структуру. · альфа – спираль (группа С=О одного остатка обр-ет вод.св. с гр. N=Н 4 остатка) · бета – лист (вод. св. между сближенными участками цепи). · Сверхвторичная структура – это две альфа – спирали, вложенные друг в друга. Третичная структура – общее расположение в пространстве пептидных цепей. Образуется за счет взаимодействия радикалов а/к. Связи все, кроме металлической. Ковалентная. S – H. Если хотя бы 2 радикала, то они взаимодействуют между собой – дисульфидный мостик – сшивает цепь – пространственное положение изменяется. - S – H H – S - = - S – S – Ионная связь. Водородные связи. Круговорот углерода. Основные запасы углерода на Земле находятся в виде содержащегося в атмосфере и растворенного в Мировом океане диоксида углерода, то есть углекислого газа (CO2). Рассмотрим сначала молекулы углекислого газа, находящиеся в атмосфере. Растения поглощают эти молекулы, затем в процессе фотосинтеза атом углерода превращается в разнообразные органические соединения и таким образом включается в структуру растений. Далее возможно несколько вариантов: · углерод может оставаться в растениях, пока растения не погибнут. Тогда их молекулы пойдут в пищу редуцентам (организмам, которые питаются мертвым органическим веществом и при этом разрушают его до простых неорганических соединений), таким как грибы и термиты. В конце концов углерод вернется в атмосферу в качестве CO2; · растения могут быть съедены травоядными животными. В этом случае углерод либо вернется в атмосферу (в процессе дыхания животных и при их разложении после смерти), либо травоядные животные будут съедены плотоядными (и тогда углерод опять же вернется в атмосферу теми же путями); · растения могут погибнуть и оказаться под землей. Тогда в конечном итоге они превратятся в ископаемое топливо — например, в уголь. В случае же растворения исходной молекулы CO2 в морской воде также возможно несколько вариантов: · углекислый газ может просто вернуться в атмосферу (этот вид взаимного газообмена между Мировым океаном и атмосферой происходит постоянно); · углерод может войти в ткани морских растений или животных. Тогда он будет постепенно накапливаться в виде отложений на дне Мирового океана и в конце концов превратится в известняк (см.Цикл преобразования горной породы) или из отложений вновь перейдет в морскую воду. Круговорот азота. Большая часть элемента пребывает в свободной форме, при котором два атома образуют молекулу N2. Из-за достаточно прочной связи между атомами в молекуле использовать такое соединение напрямую не представляется возможным. Чтобы живые организмы могли полноценно усваивать этот химический элемент, его нужно перевести в «связанное» состояние. В таком состоянии азот представляет собой заряженный нитрат-ион NO3-, в таком виде он может усваиваться растениями. В природе основным поставщиком этого связанного элемента выступают различные микроорганизмы. Именно благодаря микроскопическим труженикам от 90 до 140 млн. тонн иона азота переходит в нужное для биосферы состояние. Круговорот N2 в природе берет свое начало в деятельности различных микроорганизмов, которые извлекают азот из разлагающихся отходов. Одна часть элемента преобразуется в молекулы, необходимые для существования этих микроорганизмов. Другая часть высвобождается в виде ионов аммония и молекул аммиака. Различные разновидности бактерий переводят азот из этих веществ в форму нитратов. Азотистые соединения в виде удобрения усваиваются растениями, а через них и животными. После смерти организма микроэлемент возвращается в почву, чтобы заново совершить круговорот азота в природе. Круговорот фосфора. Основная масса фосфора содержится в горных породах, образовавшихся в прошлые геологические эпохи. В биогеохимический круговорот фосфор включается в результате процессов выветривания горных пород. В наземных экосистемах растения извлекают фосфор в виде растворимых фосфатов из почвы (в основном в форме РО43–) и включают его в состав органических соединений (белков, нуклеиновых кислот, фосфолипидов и др.) или оставляют в неорганической форме. Далее фосфор передается по цепям питания. После отмирания живых организмов и с их выделениями фосфор возвращается в почву. 10. Пути проникновения веществ в клетки: проницаемость наружной мембраны, процессы фаго и пиноцитоза и их биологическая роль. Все клетки состоят из трех основных частей: Ø клеточной оболочки (ограничивает клетку от окружающей среды); Ø цитоплазмы (составляет внутреннее содержимое клетки); Ø ядра (у прокариот — нуклеоид) — содержит генетический материал клетки. Между клеткой и окружающей средой постоянно происходит обмен веществ. Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол иионы, причем сами мембраны в известной мере активно регулируют этот процесс — одни вещества пропускают, а другие нет. Ионы и небольшие молекулы транспортируются через мембрану путем пассивного или активного транспорта, макромолекулы и крупные частицы — путем эндо- и экзоцитоза. o Активный транспорт (с затратой энергии). Если концентрация веществ в клетке и вне ее равны, или в клетке больше. Как и облегченная диффузия, осуществляется белками-переносчиками. Но в данном случае изменение формы молекулы переносчика (ее конформация) вызывается присоединением не молекулы переносимого вещества, а фосфатной группы, отделившейся от молекулы АТФ в ходе гидролиза. o Пассивный транспорт (без затрат энергии). Если концентрация вещества в клетке меньше чем вне ее. Диффузия — транспорт ионов и молекул через мембрану из области с высокой в область с низкой их концентрацией, т.е. по градиенту концентрации. Диффузия может быть простой и облегченной. Если вещества хорошо растворимы в жирах, то они проникают в клетку путем простой диффузии. Например, кислород, потребляемый клетками при дыхании, и углекислый газ в растворе быстро диффундируют через мембраны. Вода способна проходить также через мембранные поры, образованные белками, и переносить молекулы и ионы растворенных в ней веществ. Осмос — диффузия воды через полупроницаемую мембрану из области с меньшей концентрацией солей в область с более высокой их концентрацией. Возникающее давление на полупроницаемую мембрану называют осмотическим. Клетки содержат растворы солей и других веществ, что создает определенное осмотическое давление. Живые клетки способны регулировать его, изменяя концентрацию веществ. Например, амебы имеют сократительные вакуоли для регуляции осмоса. В организме человека осмотическое давление регулируется системой органов выделения. Облегченная диффузия — транспорт веществ в клетку через ионные каналы, образованные в мембране белками, с помощью белков-переносчиков, также находящихся в мембране. Таким образом попадают в клетку нерастворимые в жирах и не проходящие через поры вещества. Например, путем облегченной диффузии глюкоза поступает в эритроциты. o Эндоцитоз: Фагоцитоз – поглощение твердых соединений. Пиноцитоз – поглощение жидких соединений. Процесс поступления веществ в клетку называется эндоцитозом. Различают пиноцитоз и фагоцитоз. Второй способ поступления веществ в клетку называют пиноцитозом – это процесс поглощения клеткой мелких капель жидкости с растворенными в ней высокомолекулярными веществами. Осуществляется путем захвата этих капель выростами цитоплазмы. Захваченные капли погружаются в цитоплазму и там усваиваются. Явление пиноцитоза свойственно животным клеткам и одноклеточным простейшим. Строение мембраны: Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Проницаемость мембраны: 11. Понятие о популяции. Численность, половой и возрастной состав, r и k стратегия. Экологическая ниша. Популяция — совокупность живущих на определенной территории особей одного вида, т.е. таких, которые скрещиваются только друг с другом. Численность популяции -это общее количество особей на данной территории или в данном объеме. Оно никогда не бывает постоянно и зависит от соотношения интенсивности размножения (плодовитости) и смертности. В процессе размножения происходит рост популяции, смертность же приводит к сокращению ее численности. Половая структура популяций: Под половой структурой популяции понимают численное соотношение самцов и самок. Половые группировки внутри популяций формируются на базе различий в морфологии (форма и строение тела) и экологии различных полов. Например, у некоторых насекомых самцы имеют крылья, а самки нет, у самцов некоторых млекопитающих имеются рога, но они отсутствуют у самок, у самцов птиц яркое оперение, а у самок маскирующее. Экологические различия выражаются в пищевых предпочтениях (самки многих комаров сосут кровь, а самцы питаются нектаром). Генетический механизм обеспечивает примерно равное соотношение особей обоих полов при рождении. Однако исходное соотношение вскоре нарушается в результате физиологических, поведенческих и экологических различий самцов и самок, вызывающих неравномерную смертность. Так, у человека вторичное соотношение полов составляет 100 девочек на 106 мальчиков, к 16-18 годам это соотношение из-за повышенной мужской смертности выравнивается и к 50 годам составляет 85 мужчин на 100 женщин, а к 80 годам — 50 мужчин на 100 женщин. Возрастная структура популяций: Возрастной состав — имеет важное значение для существования популяции. Средняя продолжительность жизни организмов и соотношение численности (или биомассы) особей различного возраста характеризуется возрастной структурой популяции. Формирование возрастной структуры происходит в результате совместного действия процессов размножения и смертности. В любой популяции условно выделяются 3 возрастные экологические группы: o Предрепродуктивную; o Репродуктивную; o Пострепродуктивную. К предрепродуктивной группе относятся особи, еще не способные к воспроизведению. Репродуктивная – особи, способные к размножению. Пострепродуктивная – особи, утратившие способность к размножению. Длительность этих периодов сильно варьируется в зависимости от вида организмов. При благоприятных условиях в популяции имеются все возрастные группы и поддерживается более или менее стабильный возрастной состав. В быстро растущих популяциях преобладают молодые особи, а в сокращающихся — старые, уже не способные интенсивно размножаться. Такие популяции малопродуктивны, недостаточно устойчивы. ДНК. Первичная структура – последовательность нуклеотидных остатков, соединенных в одну цепочку. Остаток фосфорной кислоты, связанный с пятым атомом С в пентозе, может соединяться ковалентной связью с гидроксильной группой возле третьего атома С другого нуклеотида. На одном конце расположен связанный с пятым атомом пентозы фосфат, и этот конец называется 5'-концом (читается «пять- штрих»). На другом конце остается не связанная с фосфатом ОН- группа около третьего атома пентозы (З'-конец). Благодаря реакции полимеризации нуклеотидов образуются нуклеиновые кислоты. Вторичная структура. В 19533 г. Уотсон и Крик сделали много снимков ДНК, определили толщину нити ДНК. Ø Вторичная структура ДНК – 2 цепочки, соединенные между собой Н – связями. Ø Цепочки антипараллельные (5 – штрих и 3 – штрих) Ø Чаргафф установил, что в ДНК А = Т, а Г = Ц. Ø Количество А всегда = Т, потому что А напротив Т из-за принципа комплиментарности. Ø Спирали скручены вокруг общей оси. Правозакрученные спирали (по часовой стрелке). Левозакрученные спирали (против часовой стрелки). Третичная структура может иметь линейную форму (ядерная ДНК эукариот), кольцевую форму (бактериальная ДНК), сверхскрученные кольца (упакованы в компактный клубок). РНК. Первичная структура такая же как у ДНК. Вторичная структура – комплиментарные участки РНК закручиваются вокруг оси и получается спираль. Третичная структура – образуется за счет сближения трех участков РНК с образованием тройки нуклеотидов. Функционирование. Синтез белка происходит в цитоплазме клетки, на рибосомах, а ДНКрасположена в ядре клетки. Как информация о структуре белка из ядра доставляется к рибосомам? Этот процесс включает два этапа транскрипцию и трансляцию. Схематически процесс биосинтеза можно представить так: ДНК -> иРНК -> белок. Из ядра в цитоплазму информация о структуре белка поступает в виде информационной РНК (и-РНК). Для того чтобы синтезировать и-РНК, участок ДНК «разматывается», деспирализуется, а затем по принципу комплементарности на одной из цепочек ДНК с помощью ферментов синтезируются молекулы РНК. Это происходит следующим образом: против, например, гуанина молекулы ДНК становится цитозин молекулы РНК, против аденина молекулы ДНК — урацил РНК, напротив тимина ДНК — аденин РНК и напротив цитозина ДНК — гуанин РНК. Таким образом, формируется цепочка и-РНК, представляющая собой точную копию второй цепи ДНК (только тимин заменен на урацил). Таким образом, информация о последовательности нуклеотидов какого-либо гена ДНК «переписывается» в последовательность нуклеотидов и-РНК. Этот процесс получил название транскрипции. У прокариот синтезированные молекулы и-РНК сразу жмогут взаимодействовать с рибосомами, и начинается синтез белка. У эукариот и-РНК взаимодействует в ядре со специальными белками и переносится через ядерную оболочку в цитоплазму. В цитоплазме обязательно должен быть набор аминокислот, необходимых для синтеза белка. Эти аминокислоты образуются в результате расщепления пищевых белков. Кроме того, та или иная аминокислота может попасть к месту непосредственного синтеза белка, т. е. в рибосому, только прикрепившись к специальной транспортной РНК (т-РНК). Строение всех т-РНК сходно. Их молекулы образуют своеобразные структуры, напоминающие по форме лист клевера. Виды т-РНК обязательно различаются по триплету нуклеотидов, расположенному «на верхушке». Этот триплет, получивший название антикодон, по генетическому коду соответствует той аминокислоте, которую предстоит переносить этой Т-РНК. К «черешку листа» специальный фермент прикрепляет обязательно ту аминокислоту, которая кодируется триплетом, комплементарным антикодону. В цитоплазме происходит последний этап синтеза белка — трансляция. На тот конец и-РНК, с которого нужно начать синтез белка, нанизывается рибосома. Рибосома перемещается по молекуле и-РНК прерывисто, «скачками», задерживаясь на каждом триплете приблизительно 0,2 с. За это мгновение одна т-РНК из многих способна «опознать» своим антикодоном триплет, на ко-тором находится рибосома. И если антикодон комплементарен этому триплету и-РНК, аминокислота отсоединяется от «черешка листа» и присоединяется пептидной связью к растущей белковой цепочке (рис. 37). В этот момент рибосома сдвигается по и-РНК на следующий триплет, кодирующий очередную аминокислоту синтезируемого белка, а очередная т-РНК «подносит» необходимую аминокислоту, наращивающую растущую цепочку белка.
17. Типы РНК. Выделяют типы РНК, различающихся по структуре, величине молекул, расположению в клетке и выполняемым функциям. Рибосомные РНК (рРНК) синтезируются в основном в ядрышке и составляют примерно 85% всех РНК клетки. Они входят в состав рибосом и участвуют в формировании активного центра рибосомы, где происходит процесс биосинтеза белка. Транспортные РНК (тРНК) образуются в ядре на ДНК, затем переходят в цитоплазму. Они составляют около 10% клеточной РНК и являются самыми небольшими по размеру РНК, состоящими из 70— 100 нуклеотидов. Каждая тРНК присоединяет определенную аминокислоту и транспортирует ее к месту сборки полипептида в рибосоме. Акцепторный конец является «посадочной площадкой» для аминокислоты. Информационные, или матричные, РНК (иРНК) составляют около 5% всей клеточной РНК. Они синтезируются на участке одной из цепей молекулы ДНК и передают информацию о структуре белка из ядра клеток к рибосомам, где эта информация реализуется. В зависимости от объема копируемой информации молекула иРНК может иметь различную длину. Малая ядерная РНК: все эукариотические клетки содержат множество малых ядерных РНК (мяРНК) – коротких стабильных молекул РНК, большинство которых в составе нуклеопротеидных частиц присутствуют в ядре. Ответственные за созревание м-РНК. Менее 2% от всей РНК. Малая цитоплазматическая РНК (мцРНК) функции не известны. Их содержание менее 2 % от всей РНК. Таким образом, различные типы РНК представляют собой единую функциональную систему, направленную на реализацию наследственной информации через синтез белка. Молекулы РНК находятся в ядре, цитоплазме, рибосомах, митохондриях и пластидах клетки.
18. Строение клеток про- и эукариот. По строению клетки живые организмы делят на прокариот и эукариот. Клетки и тех и других окружены плазматической мембраной, снаружи от которой во многих случаях имеется клеточная стенка. Внутри клетки находится полужидкая цитоплазма. Однако клетки прокариот устроены значительно проще, чем клетки эукариот. Животная клетка: Наличие наружной мембраны, цитоплазмы с органоидами, ядра с хромосомами. Хромосомы — основные структуры ядра, носители наследственной информации о признаках организма. Она передается в процессе деления материнской клетки дочерним клеткам, а с половыми клетками — дочерним организмам. Ядро — место синтеза ДНК, иРНК, рРНК. Бактериальная клетка: Обязательными органоидами являются: ядерный аппарат, цитоплазма, цитоплазматическая мембрана. Необязательными (второстепенными) структурными элементами являются: клеточная стенка, капсула, споры, пили, жгутики. В центре бактериальной клетки находится нуклеоид - ядерное образование, представленное чаще всего одной хромосомой кольцевидной формы. Состоит из двухцепочечной нити ДНК. Нуклеоид не отделен от цитоплазмы ядерной мембраной. Цитоплазма - сложная коллоидная система, содержащая различные включения метаболического происхождения (зерна волютина, гликогена, гранулезы и др.), рибосомы и другие элементы белоксинтезирующей системы, плазмиды (вненуклеоидное ДНК), мезосомы (образуются в результате инвагинации цитоплазматической мембраны в цитоплазму, участвуют в энергетическом обмене, спорообразовании, формировании межклеточной перегородки при делении). Цитоплазматическая мембрана ограничивает с наружной стороны цитоплазму, имеет трехслойное строение и выполняет ряд важнейших функций- барьерную (создает и поддерживает осмотическое давление), энергетическую (содержит многие ферментные системы- дыхательные, окислительно- восстановительные, осуществляет перенос электронов), транспортную (перенос различных веществ в клетку и из клетки). Клеточная стенка - присуща большинству бактерий (кроме микоплазм, ахолеплазм и некоторых других не имеющих истинной клеточной стенки микроорганизмов). Она обладает рядом функций, прежде всего обеспечивает механическую защиту и постоянную форму клеток, с ее наличием в значительной степени связаны антигенные свойства бактерий. В составе - два основных слоя, из которых наружный - более пластичный, внутренний - ригидный. Ворсинки (пили, фимбрии) – это тонкие белковые выросты на поверхности клеточной стенки. Функционально они различны. Различают комон-пили и секс-пили. Комон-пили отвечают за адгезию бактерий на поверхности клеток макроорганизма. Они характерны для грамположительных бактерий. Секс-пили обеспечивают контакт между мужскими и женскими бактериальными клетками в процессе конъюгации. Через них идет обмен генетической информацией от донора к реципиенту. Донор – мужская клетка – обладает секс-пили. Женская клетка – реципиент – не имеет секc-пили. Белок секс-пили колируется генами F-плазмиды. Жгутики – органеллы движения. Есть у подвижных бактерий. Это особые белковые выросты на поверхности бактериальной клетки, содержащие белок – флагелин. Количество и расположение жгутиков может быть различным.
|
||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-28; просмотров: 228; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.143.118 (0.013 с.) |