Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тема 5 Пределы и непрерывность

Поиск

 

Предел числовой последовательности. Предел функции в бесконечности и точке. Бесконечно малые величины и их свойства. Бесконечно большие величины. Основные теоремы о пределах: теорема единственности, предел суммы, произведения, частного. Признаки существования предела. Второй замечательный предел. Число е. Понятие о натуральных логарифмах. Непрерывность функции в точке и на промежутке. Основные теоремы о непрерывных функциях. Вычисление пределов. (1, гл.6, § 6.1–6.7); (2, гл.6).

Необходимо ознакомиться с определением предела числовой последовательности (1, с.141, 142) и его геометрической интерпретацией; понять определение предела функции в точке (1, с.143–146) и в бесконечности и познакомиться с их геометрической интерпретацией.

Суть предела числовой последовательности в том, что для любого сколь угодно малого положительного числа e>0 можно найти номер числовой последовательности (N=N(e)), что для всех членов последовательности с номерами n>N верно неравенство êan-Aê<e.

Весьма важным являются понятия бесконечно малых и бесконечно больших величин (1, с.147-153), суть которых сводится к тому, что при своем изменении бесконечно малая (по абсолютной величине) будет меньше любого, сколь угодно малого числа e<0, а бесконечно большая будет больше любого сколько угодно большого числа М>0.

Нужно знать взаимосвязь бесконечно больших и бесконечно малых величин, с помощью которых доказываются теоремы о пределах. Следует обратить внимание на признаки существования пределов, особенно на теорему 1 (1, с.155), часто позволяющую установить наличие предела значительно проще, чем при использовании его определения.

Необходимо (без вывода) знать второй замечательный предел в двух формах записи: = e и 1/y=e.

Понятие непрерывности функции (в точке, на промежутке) является более простым, чем предел, так как оно выражается непрерывностью графика при прохождении данной точки, данного промежутка (без отрыва карандаша от листабумаги). Наряду с интуитивным представлениемнадо знать определение непрерывности функции в точке и на промежутке, свойства непрерывных функций (1, с. 161 – 166), а также то, что всякая элементарная функция непрерывна в каждой точке области определения и может иметь разрыв лишь на границах области определения.

Необходимо ознакомиться с теоретическими вопросами и дать на них ответы.

Рекомендуется разобрать задачи с решениями N6.1-6.3, 6.5, 6.6,. 6.8, 6.9-6.11, 6.13, 6.14 и задачи для самостоятельной работы N 6.18, 6.20–6.27, 6.33–6.36, 6.38–6.41 по учебнику (1) и аналогичные задачи по практикуму (2).

 

РАЗДЕЛ III ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

Тема 6 Производная

Задачи, приводящие к понятию производной. Производная, ее геометрический, механический и экономический смысл. Уравнение касательной к плоской кривой; Дифференцируемость функции. Связь между дифференцируемостью и непрерывностью функции (необходимый признак дифференцируемости). Основные правила и основные формулы дифференцирования. Производная сложной функции Производные высших порядков. (1, гл. 7, § 7.1 – 7.7, с. 176 – 205); (2, гл. 7).

Необходимо изучить задачи, приводящие к понятию производной: задачи о касательной и задачи о скорости движения (1, с.176, 177), задачи о производительности труда (экономический смысл производной).

После этого нужно усвоить определение производной как предел отношения приращения функции к приращению аргумента при стремлении последнего к нулю. Нужно знать обозначение производной, алгоритм ее вычисления, основываясь на теории пределов.

Студент обязан понимать геометрический и механический смысл производной (1,с.178, 181), уметь решать простейшие задачи по вычислению производной на основе алгоритма ее вычисления; знать и уметь применять основные правила дифференцирования, вычислять производную сложной и обратной функций. При этом нужно знать четко правила вычисления элементарных функций (1,с. 188,193), знать наизусть таблицу производных (1, с.192). Это позволит усвоить дифференцирование сложных функций, обратных функций, неявно заданных функций (1, с.193), находить производные от произведения, суммы, разности, а также вычислять производные высших порядков. Нужно знать использование понятия производной в экономике, понятие эластичности функции, свойства эластичности функции.

Изучая материал этой темы, студенты знакомятся с необходимым условием дифференцируемости функции. Необходимо четко уяснить, что из дифференцируемости функции в некоторой точке следует ее непрерывность в этой точке. Обратная теорема несправедлива, так как существуют непрерывные функции, которые в некоторых точках могут не иметь производной (1, с. 179, 180).

Рекомендуется разобрать задачи с решениями N 7.1–7.8, 7.10, 7.13, 1.15–7.17 и задачи для самостоятельной работы N 7.20–7.29, 7.35, 7 42, 7.43, 7.46–7. 49 по учебнику (1) и аналогичные задачи по практикуму (2).

Для усвоения темы нужно решить задачи контрольной работы, ответить письменно на теоретические вопросы в контрольной работе.



Поделиться:


Последнее изменение этой страницы: 2016-12-28; просмотров: 207; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.26.249 (0.005 с.)