Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Гидрометаллургический способСодержание книги Поиск на нашем сайте
Не нашел широкого применения. Его используют при переработке бедных окисленных и самородных руд. Этот способ, в отличие от пирометаллургического, не позволяет извлечь попутно с медью драгоценные металлы. Гидрометаллургические методы основаны на избирательном растворении медьсодержащих минералов, обычно в слабых растворах H2SO4 или аммиака. Из раствора медь либо осаждают железом, либо выделяют электролизом с нерастворимыми анодами. Пирометаллургический способ В мировой практике 80% меди извлекают из концентратов пирометаллургическими методами, основанными на расплавлении всей массы материала. В процессе плавки, вследствие большего сродства меди к сере, а компонентов пустой породы и железа к кислороду, медь концентрируется в сульфидном расплаве (штейне), а окислы образуют шлак. Данный метод пригоден для переработки всех руд и особенно эффективен в том случае, когда руды подвергаются обогащению. Он заключается в следующих производственных процессах: - обогащение руды; - обжиг руды; - выплавка медного штейна; - получение черновой меди; - рафинирование меди. Медь, предназначенную для электротехники, обязательно подвергают очистке путем электролиза. Из полученных катодных медных пластин выплавляют болванки массой 80…90 кг. Их прокатывают и протягивают в изделия требуемого поперечного сечения. Твердотянутая медь (маркировка МТ) получается методом холодной протяжки. Она прочная, твердая и упругая. Используется для изготовления неизолированных проводов (см. ниже). Мягкая медь (маркировка ММ) получается в результате отжига (нагрев до нескольких сотен градусов с последующим охлаждением). Она сравнительно пластична, менее прочна и тверда, но обладает большим относительным удлинением при разрыве и большей удельной проводимостью. Используется для монтажных проводов и шнуров (см. ниже). К стандартным маркам меди относятся: М1 – 99,90% Cu, остальное ‒ примеси, в том числе О2 не более 0,08%; М0 – 99,95% Cu, остальное ‒ примеси, в том числе О2 не более 0,02%. Алюминий Алюми́ний [5] относится к группе лёгких металлов. К данной группе относятся: алюминий, галлий, индий, олово, таллий, свинец и висмут. Наиболее распространённый металл и третий по распространённости химический элемент в земной коре (после кислорода и кремния). Простое вещество алюминий ‒ лёгкий, парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- и электропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия. Недостатком алюминия является сравнительно низкая его механическая прочность, резко снижающаяся при температуре 150°C. Алюминиевая проволока при одинаковых длине и проводимости с медной проволокой имеет сечение больше на 60%, а масса ее составляет 48% массы меди. По механическим свойствам алюминиевая проволока может быть твердой (не отожженной) марки АТ, полутвердой (частично отожженной) марки АПТ и мягкой (отожженной) марки АМ. Отожженный алюминий в 3 раза менее прочен на разрыв, чем отожженная медь. Алюминий (таблица 3) получают электролизом глинозема Al2O3 в расплаве криолита Na3AlF6 при температуре 950oC. Таблица 3 Марки алюминия
Благородные металлы К ним относятся золото, серебро и металлы платиновой группы: платина, осмий, иридий, рутений, палладий и родий. Серебро - металл, обладающий наименьшим сопротивлением и высокой пластичностью. Применяется для изготовления контактов, радиочастотных кабелей, в припоях, в качестве защиты медных проводов. Серебро является наилучшим проводником электричества. Его удельное сопротивление при 20 градусах равно 0,016 Ом∙мм/м (0,017 для меди; 0,024 для золота и 0,028 для алюминия). Помимо хорошей электрической проводимости обладает стойкостью против действия кислорода при высоких температурах. Большая часть серебра (около 80%) извлекается попутно из полиметаллических руд, а также из руд золота и меди. При извлечении серебра из серебряных и золотых руд применяют метод цианирования. Он заключается в растворении серебра в щелочном растворе цианида натрия при доступе воздуха: 2Ag + 4NaCN + ½O2 + H2O = 2Na[Ag(CN)2] + 2NaOH. Из полученных растворов комплексных цианидов серебро выделяют восстановлением цинком или алюминием: 2[Ag(CN)2]-+ Zn = [2Zn(CN)4]2- + 2Ag. Золото отличается тем, что имеет исключительную теплопроводность и очень низкое сопротивление (удельное сопротивление при 20 градусах равно 0,024 Ом∙мм/м). Исключительной особенностью является его ковкость и тягучесть, кроме того это очень тяжёлый металл. При всем этом золото уступает большинству из благородных металлов по прочности и химической стойкости. Из сплавов золота с серебром или медью изготавливают: - волоски гальванометров и других точных приборов; - миниатюрные электрические контакты. Золотые покрытия отличаются высокой стойкостью и хорошей отражательной способностью. В настоящее время золочению подвергают детали проводников в высоковольтной радиоаппаратуре, отдельные части рентгеновских аппаратов, изготовляют отражатели с золотым покрытием для сушки инфракрасными лучами. Золото с медью может образовывать прочное соединение при диффузионной сварке. Такие соединения называют золотыми печатями и применяют в радиотехнике. Платина. Стабильность электрических, термоэлектрических и механических свойств платины плюс высочайшая коррозионная и термическая стойкость сделали этот металл незаменимым для современной электротехники, автоматики и телемеханики, радиотехники, точного приборостроения. Из платины делают электроды топливных элементов. Палладий. Самый лёгкий драгоценный металл. К особенностям можно отнести его гибкость, пластичность и стойкость к коррозии. Основная же уникальная способность палладия это возможность растворения водорода и исключительная легкоплавкость. Палладий широко используют в электротехнической промышленности в виде сплавов главным образом с серебром, а также родием, золотом, платиной и другими металлами для изготовления контактов (рис. 3), особенно таких, которые применяют в технике слабых токов. Рис. 3. Контакт из палладия Тугоплавкие металлы Вольфрам Получение: - выделение триоксида из рудных концентратов; - восстановление до металлического порошка водородом при 700°С; - полученный порошок прессуют, спекают в атмосфере водорода при 1200…1300°C и пропускают через него электрический ток; - применение зонной плавки [8]. Химические свойства: - при комнатной температуре не изменяется на воздухе; - при температуре красного каления медленно окисляется в оксид вольфрама (VI). Физические свойства: - температура плавления 3422°C, кипит при 5555°C; - обладает парамагнитными свойствами; - при температуре около 1600°C хорошо поддается ковке. Применение: - электроды для аргоно-дуговой сварки; - нити накаливания в осветительных приборах. Молибден Получение: - обогащение руд флотационным методом; - концентрат обжигают до образования оксида МоО3; - подвергают дополнительной очистке; - МоО3 восстанавливают водородом; - полученные заготовки обрабатывают давлением (ковка, прокатка, протяжка). Применение: - ртутные герконовые реле; - трубопроводы из нержавеющей стали.
|
||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-27; просмотров: 417; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.152.189 (0.006 с.) |