Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Раздел 7. Аналитический метод↑ ⇐ ПредыдущаяСтр 3 из 3 Содержание книги
Поиск на нашем сайте
Построим диаграмму качества переходного процесса по коэффициенту усиления разомкнутой системы при отключенной местной ОС (). k=0.01875 Согласно структурно-математической схеме (см. рис. 3) передаточная функция гармонически линеализованной разомкнутой системы равна: где -коэффициент гармонической линеализации для релейной характеристики с зоной нечувствительности. По передаточной функции (7.1) определяем характеристический полином замкнутой нелинейной системы Для построения диаграммы качесвта в полиноме (7.2) произведём подстановку Эту подстановку удобно выполнять путем разложения полинома D(p,a) в ряд по степеням : где индекс означает, что в выражения для производных необходимо подставить вместо p. Из (7.2) находим Подставим выражения (7.4) и (7.3), и выделим в последнем вещественную и мнимую части и приравняем их к нулю. Получим Из второго уравнения (7.5) находим . Подставим это значение в первое уравнение системы (7.5) и решим его относительно k: В выражение (7.6) подставим численные значения параметров. Получим: ????????? Задаемся различными значениями колебаний a и при выбранных постоянных значениях показателей затухания строим кривые (см. рис.5). Кривые соответствуют расходящимся колебаниям, а кривые - затухающим колебаниям. Область, лежащая правее штриховой прямой, проходящей через точку k1, является областью существования автоколебаний. Область, расположенная левее этой прямой, является областью устойчивого равновесного состояния системы. Рис.5. Диаграмма качества переходного процесса в САУ температуры
Как видно из графиков все кривые расположены левее прямой, проходящей через точку k=0,075. Следовательно, САУ температуры находится в устойчивом равновесном состоянии.
Раздел 8. Частотный метод Коэффициент затухания и частоту колебаний переходного процесса в САУ температуры будет отыскивать путем решения гармонически линеаризованного уравнения. где получается из передаточной функции линейной части системы подстановкой а гармонически линеаризованная передаточная функция нелинейного звена – подстановкой в выражение в результате которой получаем: Уравнение (4.1) будем решать графически. Для этого в передаточной функции линейной части системы: произведем подстановку . Получим Модуль этой функции и фаза Подставив в выражения (8.7) и (8.8) приведенные в исходных данных значения параметров и, задаваясь различными постоянными значениями показателя затухания , построим серию кривых как функции от частоты колебаний при (см. рис 6). На этом же графике нанесем обратную амплитудно-фазовую характеристику нелинейного звена при заданных параметрах b и с. Для нелинейной характеристики релейного типа с зоной нечувствительности имеем ??????
Рис. 6. Частотные характеристики линейной части системы
Рис. 7. Частотные характеристики линейной части системы и нелинейного звена САУ температуры Как видно из графиков, точка пересечения годографов линейной части системы и нелинейного звена отсутствует. Следовательно, САУ температуры находится в устойчивом равновесном состоянии.
|
||||
Последнее изменение этой страницы: 2016-12-13; просмотров: 213; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.6.122 (0.007 с.) |