Появление систем и сетей хранения данных



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Появление систем и сетей хранения данных



Другой особенностью современной истории развития вычислительных систем, наряду с появлением блейд-серверов, стало появление специализированных систем и сетей хранения данных. Внутренние подсистемы хранения серверов часто уже не могли предоставить необходимый уровень масштабируемости и производительности в условиях лавинообразного наращивания объемов обрабатываемой информации. В итоге появились внешние системы хранения данных, ориентированные сугубо на решение задач хранения данных и предоставление интерфейса доступа к данным для их использования.

Система Хранения Данных (СХД) - это программно-аппаратное решение по организации надёжного хранения информационных ресурсов и предоставления к ним гарантированного доступа.

Системы хранения данных представляют собой надежные устройства хранения, выделенные в отдельный узел. Система хранения данных может подключаться к серверам многими способами. Наиболее производительным является подключение по оптическим каналам (Fiber Channel), что дает возможность получать доступ к системам хранения данных со скоростями 4-8 Гбит/сек. Системы хранения данных так же имеют резервирование основных аппаратных компонент – несколько блоков питания, raid контроллеров, FC адаптеров и оптических патчкордов для подключения к FC коммутаторам.

 

 

Рис. 1.3. Типичная Система хранения данных начального уровня (Sun StorageTek 6140)

Отметим основные преимущества использования СХД:

Высокая надёжность и отказоустойчивость – реализуется полным или частичным резервированием всех компонент системы (блоков питания, путей доступа, процессорных модулей, дисков, кэша и т.д.), а также мощной системой мониторинга и оповещения о возможных и существующих проблемах;

Высокая доступность данных – обеспечивается продуманными функциями сохранения целостности данных (использование технологии RAID, создание полных и мгновенных копий данных внутри дисковой стойки, реплицирование данных на удаленную СХД и т.д.) и возможностью добавления (обновления) аппаратуры и программного обеспечения в беспрерывно работающую систему хранения данных без остановки комплекса;

Мощные средства управления и контроля – управление системой через web-интерфейс или командную строку, выбор нескольких вариантов оповещения администратора о неполадках, полный мониторинг системы, работающая на уровне "железа" технология диагностики производительности;

Высокая производительность – определяется числом жёстких дисков, объёмом кэш-памяти, вычислительной мощностью процессорной подсистемы, числом внутренних (для жёстких дисков) и внешних (для подключения хостов) интерфейсов, а также возможностью гибкой настройки и конфигурирования системы для работы с максимальной производительностью;

Беспроблемная масштабируемость – обычно существует возможность наращивания числа жёстких дисков, объёма кэш-памяти, аппаратной модернизации существующей системы хранения данных, наращивания функционала с помощью специального ПО, работающего на стойке, без значительного переконфигурирования или потерь какой-то функциональности СХД. Этот момент позволяет значительно экономить и более гибко проектировать свою сеть хранения данных.

Сегодня системы хранения данных являются одним из ключевых элементов, от которых зависит непрерывность бизнес-процессов компании. В современной корпоративной ИТ-инфраструктуре СХД, как правило, отделены от основных вычислительных серверов, адаптированы и настроены для различных специализированных задач. Системы хранения данных реализуют множество функций, они играют важную роль в построении систем оперативного резервного копирования и восстановления данных, отказоустойчивых кластеров, высоко доступных ферм виртуализации.

Сети хранения данных

SAN - это высокоскоростная коммутируемая сеть передачи данных, объединяющая серверы, рабочие станции, дисковые хранилища и ленточные библиотеки. Обмен данными происходит по протоколу Fibre Channel, оптимизированному для быстрой гарантированной передачи сообщений и позволяющему передавать информацию на расстояние от нескольких метров до сотен километров.

Движущей силой для развития сетей хранения данных стал взрывной рост объема деловой информации (такой как электронная почта, базы данных и высоконагруженные файловые сервера), требующей высокоскоростного доступа к дисковым устройствам на блочном уровне. Ранее на предприятии возникали "острова" высокопроизводительных дисковых массивов SCSI. Каждый такой массив был выделен для конкретного приложения и виден ему как некоторое количество "виртуальных жестких дисков". Сеть хранения данных (Storage Area Network или SAN) позволяет объединить эти "острова" средствами высокоскоростной сети. Основу SAN составляет волоконно-оптическое соединение устройств по интерфейсу Fibre Chanel, обеспечивающее скорость передачи информации между объектами 1,2,4 или 8 Gbit/sec. Сети хранения помогают повысить эффективность использования ресурсов систем хранения, поскольку дают возможность выделить любой ресурс любому узлу сети. Рассмотрим основные преимущества SAN:

  • Производительность. Технологии SAN позволяют обеспечить высокую производительность для задач хранения и передачи данных.
  • Масштабируемость. Сети хранения данных обеспечивают удобство расширения подсистемы хранения, позволяют легко использовать приобретенные ранее устройства совместно с новыми устройствами хранения данных.
  • Гибкость. Совместное использование систем хранения данных, как правило, упрощает администрирование и добавляет гибкость, поскольку кабели и дисковые массивы не нужно физически транспортировать и перекоммутировать от одного сервера к другому. SAN позволяет подключить новые серверы и дисковые массивы к сети без остановки системы.
  • Централизованная загрузка. Другим преимуществом является возможность загружать сервера прямо из сети хранения. При такой конфигурации можно быстро и легко заменить сбойный сервер, переконфигурировав SAN таким образом, что сервер-замена, будет загружаться с логического диска сбойного сервера.
  • Отказоустойчивость. Сети хранения помогают более эффективно восстанавливать работоспособность после сбоя. В SAN может входить удаленный участок с вторичным устройством хранения. В таком случае можно использовать репликацию — реализованную на уровне контроллеров массивов, либо при помощи специальных аппаратных устройств. Спрос на такие решения значительно возрос после событий 11 сентября 2001 года в США.
  • Управление. Технологии SAN позволяют обеспечить централизованное управление всей подсистемой хранения данных.

Топологии SAN

Рассмотрим некоторые топологии сетей хранения данных

Однокоммутаторная структура (англ. single-switch fabric) состоит из одного коммутатора Fibre Channel, сервера и системы хранения данных. Обычно эта топология является базовой для всех стандартных решений — другие топологии создаются объединением однокоммутаторных ячеек.

 

 

Рис. 1.4. Однокоммутаторная структура SAN

Каскадная структура— набор ячеек, коммутаторы которых соединены в дерево с помощью межкоммутаторных соединений.

 

 

Рис. 1.5. Каскадная структура SAN

Решетка — набор ячеек, коммутатор каждой из которых соединен со всеми другими. При отказе одного (а в ряде сочетаний — и более) соединения связность сети не нарушается. Недостаток — большая избыточность соединений

 

 

Рис. 1.6. Структура Решетка

Кольцо— практически повторяет схему топологии решётка. Среди преимуществ — использование меньшего количества соединений.

 

 

Рис. 1.7. Структура Кольцо



Последнее изменение этой страницы: 2016-12-12; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.235.179.79 (0.009 с.)