Реальные газы. Жидкости. Твердые тела. Фазовые переходы. Фазовая диаграмма.



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Реальные газы. Жидкости. Твердые тела. Фазовые переходы. Фазовая диаграмма.



Ван дер Ваальс предположил, что на малых расстояниях (r) между молекулами действуют силы отталкивания, которые с увеличением расстояния сменяются силами притяжения. На основе этих представлений, даже не рассматривая количественной зависимости межмолекулярного взаимодействия от расстояния, он получил так называемое Ван-дер-Ваальсово уравнение состояния реального газа.
Уравнение состояния газа Ван-дер-Ваальса — уравнение, связывающее основные термодинамические величины в модели газа Ван-дер-Ваальса.
Хотя модель идеального газа хорошо описывает поведение реальных газов при низких давлениях и высоких температурах, в более экстремальных условиях её согласие с опытом гораздо хуже. В частности, это проявляется в том, что реальные газы могут быть переведены в жидкое и даже в твердое состояние, а идеальные — не могут.
Для более точного описания поведения реальных газов при низких температурах была создана модель газа Ван-дер-Ваальса, вводящая поправку на конечный диаметр молекулы и на притяжение молекул на больших расстояниях (напомним, что в идеальных газах частицы считаются точечными и никак не взаимодействуют на расстоянии).

Термическим уравнением состояния (или, часто, просто уравнением состояния) называется связь между давлением, объемом и температурой.

Для одного моля газа Ван-дер-Ваальса оно имеет вид:

где:
P — давление,

V — объем,

T — абсолютная температура,

R — универсальная газовая постоянная,

a - учитывает притяжение молекул,

b — конечный объем молекулы.

Свойства жидкостей
Объём и форма:

Одним из характерных свойств жидкости является то, что она имеет определённый объём (при неизменных внешних условиях), но принимает форму сосуда, в котором находится. Жидкость чрезвычайно трудно сжать, поскольку давление равномерно передаётся по всей поверхности (принцип Паскаля). Эта особенность используется в гидравлических машинах.
Диффузия:

Другим свойством является диффузия. При нахождении в сосуде двух смешиваемых жидкостей молекулы начинают постепенно диффундировать через поверхность раздела, постепенно выравнивая концентрации обоих типов молекул.
Вязкость:

Кроме того, жидкости (как и газы) характеризуются вязкостью. Она определяется как способность частиц двигаться относительно друг друга.
Испарение

В поверхностном слое и вблизи поверхности жидкости действуют силы, которые обеспечивают существование поверхности и не позволяют молекулам покидать объем жидкости. Благодаря тепловому движению некоторая часть молекул имеет достаточно большие скорости, чтобы преодолеть силы, удерживающие молекулы в жидкости, и покинуть жидкость. Это явление называется испарением. Оно наблюдается при любой температуре, но его интенсивность возрастает с увеличением температуры.
Если покинувшие жидкость молекулы удаляются из пространства вблизи поверхности жидкости, то, в конце концов, вся жидкость испарится. Если же молекулы, покинувшие жидкость не удаляются, то они образуют пар. Молекулы пара, попавшие в область вблизи поверхности жидкости, силами притяжения втягиваются в жидкость. Этот процесс называется конденсацией.

Таким образом, в случае неудаления молекул скорость испарения уменьшается со временем. При дальнейшем увеличении плотности пара достигается такая ситуация, когда число молекул, покидающих жидкость за некоторое время, будет равно числу молекул, возвращающихся в жидкость за то же время. Наступает состояние динамического равновесия. Пар в состоянии динамического равновесия с жидкостью называется насыщенным.
С повышением температуры плотность и давление насыщенного пара увеличиваются. Чем выше температура, тем большее число молекул жидкости обладает энергией, достаточной для испарения, и тем большей, должна быть плотность пара, чтобы конденсация могла сравняться с испарением.
Кипение
Когда при нагревании жидкости достигается температура, при которой давление насыщенных паров равно внешнему давлению, устанавливается равновесие между жидкостью и ее насыщенным паром. При сообщении жидкости дополнительного количества теплоты происходит немедленное превращение соответствующей массы жидкости в пар. Этот процесс называется кипением.
Температурой кипения является та температура, при которой давление насыщенных паров становится равным внешнему давлению. При увеличении давления температура кипения увеличивается, а при уменьшении - уменьшается.
По причине изменения давления в жидкости с высотой ее столба, кипение на различных уровнях в жидкости происходит, строго говоря, при различной температуре. Определенную температуру имеет лишь насыщенный пар над поверхностью кипящей жидкости. Его температура определяется только внешним давлением. Именно эта температура имеется в виду, когда говорят о температуре кипения.
Количество тепла, которое необходимо подвести, для того чтобы изотермически превратить в пар определенное количество жидкости, при внешнем давлении, равном давлению ее насыщенных паров, называется скрытой теплотой парообразования. Обычно эту величину соотносят к одному грамму, или одному молю. Количество теплоты, необходимое для изотермического испарения моля жидкости называется молярной скрытой теплотой парообразования. Если эту величину поделить на молекулярный вес, то получится удельная скрытая теплота парообразования.
Поверхностное натяжение:
Интересным свойством является также изменение поверхности жидкостей, обусловленное стремлением минимизировать свободную энергию раздела фаз. Жидкости поэтому подразделяют на смачиваемые и несмачиваемые.
Явление поверхностного натяжения
В окружающем нас мире действует сила, на которую мы обычно не обращаем внимания. Эта сила действует вдоль касательной к поверхностям всех жидкостей и носит название сила поверхностного натяжения. Она сравнительно велика, но играет немаловажную роль в природе.
Появление сил поверхностного натяжения можно объяснить так.
Молекулы воды или другой жидкости, притягиваются друг к другу, стремятся сблизиться. Каждая молекула на поверхности притягивается остальными молекулами, находящимися внутри жидкости, и поэтому имеют тенденцию к погружению в глубь. Так как жидкость текуча из-за перескоков молекул из одного положения в другое, то она принимает такую форму, при которой число молекул на поверхности минимально. А минимальную площадь поверхности при данном объеме имеет шар.
Площадь поверхности жидкости сокращается, и воспринимается это как поверхностное натяжение.

Для определения силы поверхностного натяжения проведем опыт. Возьмем прямоугольную проволочную рамку, одна сторона которой l может перемещаться в вертикальной плоскости. Опустив рамку в мыльный раствор, а затем вытащив ее, получим пленку, натянутую на рамку. Эта пленка будет сокращать свою поверхность, и подвижная часть рамки начнет перемещаться из положения, указанного на рисунке 1 штрихованной линией. Измерить модуль результирующей силы поверхностного натяжения Fн можно, приложив к проволочке некоторую силу mg, уравновешивающую силу поверхностного натяжения и возвращающую подвижную проволочку в исходное положение.
Пренебрегая весом самой проволочки и учитывая, что пленка имеет две поверхности, находим модуль силы поверхностного натяжения Fн=mg/2, где Fн – сила поверхностного натяжения, действующая вдоль поверхности пленки. Опыт показывает, что сила поверхностного натяжения зависит от длины проволочки l, т.е от длины поверхностного слоя жидкости, соприкасающегося с проволочкой.
Коэффициент поверхностного натяжения.
Отношение модуля силы поверхностного натяжения, действующей на границу поверхностного слоя длиной l, к этой длине есть величина постоянная, не зависящая от длины l. Эту величину называют коэффициентом поверхностного натяжения и обозначают

Капиллярные явления и смачиваемость.
На границе жидкостей с твердымителами наблюдается смачивание. Смачивание — явление, возникающее вследствие взаимодействия молекул жидкости с молекулами твердых тел и приводящее к искривлению поверхностижидкости у поверхности твердого тела.
Силами притяжения молекул жидкости к молекулам газа можно пренебречь, но не учитывать взаимодействия между молекулами жидкости и твердого тела нельзя. Форма поверхности жидкости, соприкасающейся с твердым телом, зависит от того, какие силы притяжения больше: между молекулами жидкости и твердого тела или между молекулами самой жидкости.
Смачиванием и несмачиванием тел объясняются явления, происходящие в очень узких трубках — капиллярах.
Под капиллярными явлениями понимают свойства жидкости подниматься или опускаться в узких трубках по отношению к ее уровню в широких сосудах.
Поверхность жидкости в капиллярных трубках имеет форму вогнутого мениска в случае смачивающих жидкостей (вода в стеклянной трубке) и выпуклого в случае несмачивающих (масло в такой же трубке). Смачивающая жидкость в капилляре поднимается выше уровня ее в широком сосуде, а несмачивающая, наоборот, ниже. Чем меньше радиус трубки г, тем выше уровень смачивающей и ниже уровень несмачивающей жидкости.
Высота поднятия жидкости в капилляре равна:

где р — плотность жидкости, g — ускорение свободного падения.

Кристаллы (особенности кристаллических решеток, типы кристаллических решеток). Теплоемкость кристаллов.

Твердые тела (кристаллы) характеризуются наличием значительных сил межмолекулярного взаимодействия и сохраняют постоянными не только свой объем, но и форму. Кристаллы имеют правильную геометрическую форму, которая. как показали рентгенографические исследования немецкого физика-теоретика М. Лауэ (1879—1960), является результатом упорядоченного расположения частиц (атомов, молекул, ионов), составляющих кристалл. Структура, для которой характерно регулярное расположение частиц с периодической повторяемостью в трех Измерениях, называется кристаллической решеткой. Точки, в которых расположены частицы, а точнее — средние равновесие положения, около которых частицы совершают колебания, называются узлами кристаллической решетки .

Кристаллические тела можно разделить па две группы: монокристаллы и поликристаллы. Монокристаллы — твердые тела, частицы которых образуют единую кристаллическую решетку. Кристаллическая структура монокристаллов обнаруживается по их внешней форме. Хотя внешняя форма монокристаллов одного типа может быть различной, но углы между соответствующими гранями у них остаются постоянными. Это закон постоянства углов, сформулированный М. В. Ломоносовым. Он сделал важный вывод, что правильная форма кристаллов связала с закономерным размещением частиц, образующих кристалл. Монокристаллами являются большинство минералов. Однако крупные природные монокристаллы встречаются довольно редко (например, лед, поваренная соль, исландский шпат). В настоящее время многие монокристаллы выращиваются искусственно. Условия роста крупных монокристаллов (чистый раствор, медленное охлаждение и т. д.) часто не выдерживаются, поэтому большинство твердых тел имеет мелкокристаллическую структуру, т. е. состоит из множества беспорядочно ориентированных мелких кристаллических зерен. Такие твердые тела называются поликристаллами (многие горные породы, металлы и сплавы).

Х арактерной особенностью монокристаллов является их анизотропность, т. е. зависимость физических свойств — упругих, механических, тепловых, электрических, магнитных, оптических — от направления. Анизотропии монокристаллов объясняется тем, что в кристаллической решетке различно число частиц, приходящихся на одинаковые по длине, во разные по направлению отрезки (рис. 2), т. с. плотность расположения частиц кристаллической решетки по разным направлениям неодинакова, что и приводит к различию свойств кристалла вдоль этаж направлений. В поликристаллах анизотропия наблюдается только для отдельных мелких кристаллов, но их различная ориентация приводит к тому, что свойства поликристалла по всем направляем в среднем одинаковы.

Ионные кристаллы. В узлах кристаллической решетки располагаются поочередно ионы противоположного знака. Типичными ионными кристаллами являются большинство галоидных соединений щелочных металлов (NаО, СsСl, КВr и т. д.), а также оксидов различных элементов (МgО, СаО и т. д.).

Атомные кристаллы. В узлах кристаллической решетки располагаются нейтральные атомы, удерживающиеся в узлах решетки гомеополярными, или ковалентными, связями.

Металлические кристаллы.В узлах кристаллической решетки располагаются положительные ионы металла. При образовании кристаллической решетки валентные электроны, сравнительно слабо связанные с атомами, отделяются от атомов и коллективизируются: они уже принадлежат не одному атому, как в случае ионной связи, и не паре соседних атомов, как в случае гомеополярной связи, а всему кристаллу в целом.

Молекулярные кристаллы. В узлах кристаллической решетки располагаются нейтральные молекулы вещества, силы взаимодействия между которыми обусловлены незначительным взаимным смещением электровоз в электронных оболочках атомов.
В качестве модели твердого тела рассмотрю правильно построенную кристаллическую решетку, в узлах которой частицы (атомы, ионы, молекулы), принимаемые за материальные точки, колеблются около своих положений равновесия — узлов решетки — в трех взаимно перпендикулярных направлениях. Таким образом, каждой составляющей кристаллическую решетку частице приписывается три колебательных степени свободы, каждая из которых, согласно закону равнораспределения энергии по степеням свободы, обладает энергией kТ.


Фазовые переходы первого рода — фазовые переходы, при которых скачком изменяются первые производные термодинамических потенциалов по интенсивным параметрам системы (температуре или давлению). Переходы первого рода реализуются как при переходе системы из одного агрегатного состояния в другое, так и в пределах одного агрегатного состояния (в отличие от фазовых переходов второго рода, которые происходят только в пределах одного агрегатного состояния).(поглощение или выделение тепла)

Примеры:

Плавление — переход из твердого кристаллического состояния в жидкое.
Кристаллизация (затвердевание) — переход вещества из жидкого в кристаллическое (твердое) состояние.
Сублимация (возгонка) — переход из твердого кристаллического состояния в газообразное.
Конденсация— переход из газообразного состояния в жидкое или твердое.
Испарение — переход из жидкого состояния в газообразное.
Тепловой эффект фазового перехода I рода рассчитывается по формуле: , где — удельная теплота фазового перехода — количество тепла, поглощаемого или выделяемого при фазовом переходе 1 килограмма вещества, — масса вещества.

Фазовые переходы второго рода — фазовые переходы, при которых первые производные термодинамических потенциалов по давлению и температуре изменяются постепенно, тогда как их вторые производные изменяются скачкообразно. Отсюда следует, в частности, что энергия и объём вещества при фазовом переходе второго рода не изменяются, но изменяются его теплоёмкость, сжимаемость, различные восприимчивости и т. д.

Примеры:

§ переход ферромагнитных веществ (железа, никеля) при определенных давлении в температуре в парамагнитное состояние,

§ переход металлов и некоторых сплавов при температуре, близкой к 0 К, в сверхпроводящее состояние, характеризуемое скачкооб­разным уменьшением электрического сопротивления до нуля.

 

Фаза — термодинамически равновесное состояние вещества, отличающееся по физическим свойствам от других возможных равновесных состояний того же вещества. Если, например, в закрытом сосуде находится вода, то эта система является двухфазной: жидкая фаза — вода; газообразная фаза — водяные пары.
Если система является однокомпонентной, т. е. состоящей из химически однородного вещества, то понятие фазы совпадает с понятием агрегатного состояниявещества, которое может быть жидким, твердым или газообразным.

Агрегатное состояние вещества зависит от его давления и температуры . Кривые фазового равновесия на диаграмме состояния показывают значения давления и температуры, при которых возможно равновесие двух фаз.

Фазовая диаграмма в общем виде Фазовая диаграмма воды

Точка, в которой пересекаются эти кривые, определяет температуру и давление одновременного равновесного сосуществования трех фаз вещества. Эта точка называется тройной точкой. Каждое вещество имеет только одну тройную точку. Тройная точка воды характеризуется температурой ( ) и давлением .

 



Последнее изменение этой страницы: 2016-12-12; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.238.174.50 (0.01 с.)