Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Внутреннее трение(вязкость) как явление переноса.

Поиск

(См в1)

Механизм возникновения внутреннего трения меж­ду параллельными слоями газа (жидкости), движущимися с различными скоростями, заключается в том, что из-за хаотического теплового движения происходит обмен молекулами между слоями, в результате чего импульс слоя, движущегося быстрее, уменьшается, движущегося медленнее — увеличивается, что приводит к торможению слоя, движущегося быстрее, и ускорению слоя, движущегося медленнее.
Согласно формуле (31.1), сила внутреннего трения между двумя слоями газа (жидкости) подчиняется закону Ньютона:
(48.5)
где h — динамическая вязкость (вязкость), d v/ d x — градиент скорости, показывающий быстроту изменения скорости в направлении х, перпендикулярном направлению дви­жения слоев, S — площадь, на которую действует сила F.
Взаимодействие двух слоев согласно второму закону Ньютона можно рассматри­вать как процесс, при котором от одного слоя к другому в единицу времени передается импульс, по модулю равный действующей силе. Тогда выражение (48.5) можно пред­ставить в виде
(48.6)
где jp — плотность потока импульса — величина, определяемая полным импульсом, переносимым в единицу времени в положительном направлении оси х через единичную площадку, перпендикулярную оси х, градиент скорости. Знак минус указывает, что импульс переносится в направлении убывания скорости (поэтому знаки и противоположны).
Динамическая вязкость h численно равна плотности потока импульса при градиенте скорости, равном единице; она вычисляется по формуле
(48.7)
Из сопоставления формул (48.1), (48.3) и (48.6), описывающих явления переноса, следует, что закономерности всех явлений переноса сходны между собой. Эти законы были установлены задолго до того, как они были обоснованы и выведены из молекулярно-кинетической теории, позволившей установить, что внешнее сходство их математи­ческих выражений обусловлено общностью лежащего в основе явлений теплопровод­ности, диффузии и внутреннего трения молекулярного механизма перемешивания молекул в процессе их хаотического движения и столкновений друг с другом.
Рассмотренные законы Фурье, Фика и Ньютона не вскрывают молекулярно-кинетического смысла коэффициентов l, D и h. Выражения для коэффициентов переноса выводятся из кинетической теории. Они записаны без вывода, так как строгое рассмот­рение явлений переноса довольно громоздко, а качественное — не имеет смысла. Формулы (48.2), (48.4) и (48.7) связывают коэффициенты переноса и характеристики теплового движения молекул. Из этих формул вытекают простые зависимости между l, D и h:

Используя эти формулы, можно по найденным из опыта одним величинам определить другие.


Вязкость.

Вязкость - сопротивление, оказываемое телом движению отдельной его части без нарушения связи целого. Такое движение составляет характеристику жидкостей, как "капельных", так и "упругих", т. е. газов.
Внутреннее трение жидкостей возникает при движении жидкости из-за переноса импульса в направлении, перпендикулярном к направлению движения. Перенос импульса из одного слоя в другой осуществляется при скачках молекул, о которых говорилось выше.
Очевидно, что жидкость будет тем менее вязкой, чем меньше время t между скачками молекул, и значит, чем чаще происходят скачки.

 

5.Течение вязкой жидкости по трубам. Метод Пуазейля определения коэффициента вязкости.

 

Тече́ние Пуазёйля — ламинарное течение жидкости через каналы в виде прямого кругового цилиндра или слоя между параллельными плоскостями. Течение Пуазёйля — одно из самых простых точных решений уравнений Навье — Стокса. Описывается законом Пуазёйля (Хагена — Пуазёйля).

Закон Пуазёйля (иногда закон Хагена — Пуазёйля) — это физический закон так называемого течения Пуазёйля, то есть установившегося течения вязкой несжимаемой жидкости в тонкой цилиндрической трубке. Закон установлен эмпирически в1839 году Г. Хагеном, а в 1840—1841 годы — независимо Ж. Л. Пуазёйлем. Теоретически объяснён Дж. Г. Стоксом в 1845 году.

При установившемся ламинарном движении вязкой несжимаемой жидкости сквозь цилиндрическую трубу круглого сечения секундный объёмный расход прямо пропорционален перепаду давления на единицу длины трубы и четвертой степени радиуса и обратно пропорционален коэффициенту вязкости жидкости.

где

· — перепад давления на концах капилляра, Па;

· Q — секундный объёмный расход жидкости, м³/с;

· R — радиус капилляра, м;

· d — диаметр капилляра, м;

· — коэффициент динамической вязкости, Па·с;

· l — длина трубы, м.

Формула используется для определения вязкости жидкостей. Другим способом определения вязкости жидкости является метод, использующий закон Стокса.

 

 

Пологая течение жидкости ламинарным, найдём закон изменения скорости v с расстоянием r от оси трубы, т.е. v(r) -? Выделим воображаемый цилиндрический объём жидкости радиуса r и длинны l. Поскольку скорости всех частиц жидкости являются постоянными v = const, сумма внешних сил, приложенных к любому объёму жидкости, равна нулю. На основание цилиндра действуют силы давления, сумма которых равна:

.

На боковую поверхность цилиндра действует сила трения:

.

Поскольку , то

.

Учитывая, что скорость убывает с расстоянием от оси трубы, т.е. ,

из (1) получим: , .

Интегрирование даёт:

. Так как при r = R скорость v = 0, то

, где R – радиус трубы.

- закон изменения скорости жидкости от расстояния до оси трубы.

Если - скорость на оси трубы, то

Вычислим поток жидкости Q – т. е. объём жидкости, протекающей через поперечное сечение трубы за единицу времени. Для этого сначала определим поток жидкости через кольцо радиуса r и толщиной dr:

-поток жидкости через кольцо dr.

Интегрируя по r, получим поток жидкости через поперечное сечение трубы:

-формула Пуазейля.

Ее можно использовать для определения коэффициента вязкости

 

 

6.Движение тел в жидкости и газе. Метод Стокса определения коэффициента вязкости.

Одной из важнейших задач гидро- и аэродинамики является изучение движения твердых тел в газе и жидкости, в частности изучение тех сил, с которыми среда воздействует на движущееся тело. Эта задача стала особенно значимой в связи с бурным развитием авиации и значительным увеличением скорости движения морских судов.

На тело, которое движется в жидкости или газе, действуют две силы (равнодействующую их обозначим R), одна из которых (Rx) направлена в сторону, противоположную движению тела (в сторону потока), - лобовое сопротивление, а вторая (Ry) перпендикулярна этому направлению - подъемная сила (рис. 1).

Рис.1


Если тело обладает осью симметрии, которая совпадает с направлением скорости, то на данное действует только лобовое сопротивление, подъемная же сила в этом случае равна нулю. Доказано, что в идеальной жидкости равномерное движение происходит без лобового сопротивления. Если исследовать движение кругового цилиндра в такой жидкости (рис. 2), то картина линий тока симметрична как относительно прямой, проходящей через точки А и В, так и относительно прямой, проходящей через точки С и D, т. с. результирующая сила давления на поверхность цилиндра будет равна нулю.

 

Рис.2

 

Другим образом обстоит дело если происходит движение тела в вязкой жидкости (особенно при увеличении скорости обтекания). Из-за вязкости среды в области движения, прилегающей к поверхности тела, создается пограничный слой частиц, которые движутся с меньшими скоростями. В результате тормозящего действия этого слоя частицы начинают вращаться и движение жидкости в пограничном слое становится вихревым. Если тело не обладает обтекаемой формой (нет плавно утончающейся хвостовой части), то происходит отрыв пограничного слоя жидкости от поверхности тела. При этом за телом возникает течение жидкости (газа), которое направлено противоположно набегающему потоку. Оторвавшийся пограничный слой, следуя за этим течением, образует вихри, вращающиеся в противоположные стороны (рис. 3).

Рис.3

 

Лобовое сопротивление зависит от формы тела и его положения относительно потока, что учитывается безразмерным коэффициентом сопротивления Cx, который определяется экспериментально:

(1) где ρ - плотность среды; ν - скорость движения тела; S - наибольшее поперечное сечение тела.

Составляющую Rx можно значительно уменьшить, если подобрать тело формы, не способствующей образованию завихрения.

Подъемная сила может быть определена формулой, аналогичной (1):

где Cy - безразмерный коэффициент подъемной силы.

Для крыла самолета требуется значительная подъемная сила при малом лобовом сопротивлении (это условие выполняется при малыхуглах атаки α (угол к потоку); см. рис. 1). Крыло тем лучше удовлетворяет этому условию, чем больше величина К=Cy/Cx называемаякачеством крыла. Большие заслуги в конструировании требуемого профиля крыла и изучении влияния геометрической формы тела на коэффициент подъемной силы принадлежат Н. Е. Жуковскому (1847-1921).

 

В этом методе шарик падает в исследуемой жидкости.

В установившимся режиме падения шарик будет двигаться с постоянной скоростью. Следовательно, ускорение шарика будет равно нулю и, согласно второму закону Ньютона, сумма действующих на него сил будет равна нулю. На шарик действуют. Сила Архимеда (см. рис. 1.35)

Рис. 1.35. Метод Стокса

FA=mж·g=(4/3)·π·r3·ρж·g,

где ρж - плотность жидкости, r - радиус шарика. Сила тяжести m·g=(4/3)·π·r3·ρ·g, где ρ - плотность материала шарика. Сила вязкого трения, которая для тел сферической формы определяется формулой Стокса Fтр=6π·η·r·v, где v - скорость шарика в установившемся режиме, η - искомый коэффициент вязкости. На основании второго закона Ньютона запишем:

(4/3)·π·r3·ρ·g=(4/3)·π·r3·ρж·g + 6π·η·r·v

Отсюда получим искомое выражение для коэффициента вязкости:

(4/3)·π·r3·g·(ρ-ρж)=6π·η·r·v → η=[(4/3)·π·r3·g·(ρ-ρж)] / 6π··r·v

 



Поделиться:


Последнее изменение этой страницы: 2016-12-12; просмотров: 2268; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.10.207 (0.006 с.)