Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Средняя длина свободного пробега молекул.Содержание книги
Поиск на нашем сайте
Под средней длиной свободного пробега понимают среднее расстояние, которое проходит молекула между двумя последовательными соударениями. За секунду молекула в среднем проходит расстояние, численно равное ее средней скорости Если за это же время она испытает в среднем столкновений с другими молекулами, то ее средняя длина свободного пробега , очевидно, будет равна (3.1.1)
Молекула столкнется со всеми неподвижными молекулами, центры которых находятся в пределах ломаного цилиндра диаметром 2d. За секунду молекула проходит путь, равный . Поэтому число происходящих за это время столкновений равно числу молекул, центры которых попадают внутрь ломаного цилиндра, имеющего суммарную длину и радиус d. Его объем примем равным объему соответствующего спрямленного цилиндра, т. е. равным Если в единице объема газа находится n молекул, то число столкновений рассматриваемой молекулы за одну секунду будет равно (3.1.2)
В действительности движутся все молекулы. Поэтому число столкновений за одну секунду будет несколько большим полученной величины, так как вследствие движения окружающих молекул рассматриваемая молекула испытала бы некоторое число соударений даже в том случае, если бы она сама оставалась неподвижной. Предположение о неподвижности всех молекул, с которыми сталкивается рассматриваемая молекула, будет снято, если в формулу (3.1.2) вместо средней скорости представить среднюю скорость относительного движения рассматриваемой молекулы. В самом деле, если налетающая молекула движется со средней относительной скоростью , то молекула, с которой она сталкивается, оказывается покоящейся, что и предполагалось при получении формулы (3.1.2). Поэтому формулу (3.1.2) следует написать в виде: (3.1.3)
Предположим, что скорости молекул до столкновения были и Тогда Из треугольника скоростей имеем (рис. 2)
Так как углы и скорости и , с которыми сталкиваются молекулы, очевидно, являются независимыми случайными величинами, то среднее
от произведения этих величин равно произведению их средних. Поэтому
(3.1.5)
С учетом последнего равенства формулу (3.1.4) можно переписать в виде: (3.1.6)
так как Cредняя квадратичная скорость пропорциональна средней скорости,
(3.1.7)
т. е.
Поэтому соотношение (3.1.6) можно представить так: (3.1.8)
С учетом последнего выражения формула для средней длины свободного пробега приобретает вид: (3.1.9)
Для идеального газа Поэтому (3.1.10)
Отсюда видно, что при изотермическом расширении (сжатии) средняя длина свободного пробега растет (убывает). Как было отмечено во введении, эффективный диаметр молекул убывает с ростом температуры. Поэтому при заданной концентрации молекул средняя длина свободного пробега увеличивается с ростом температуры. Вычисление средней длины свободного пробега для азота (d = 3•10-10 м), находящегося при нормальных условиях (р = 1,01•105 Па, Т = 273,15 К) дает: , а для числа столкновений за одну секунду: . Таким образом, средняя длина свободного пробега молекул при нормальных условиях составляет доли микрон, а число столкновений – несколько миллиардов в секунду. Поэтому процессы выравнивания температур (теплопроводность), скоростей движения слоев газа (вязкое трение) и концентраций (диффузия) являются достаточно медленными, что подтверждается опытом.
|
||||
Последнее изменение этой страницы: 2016-12-12; просмотров: 496; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.103.3 (0.006 с.) |