Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Методы детектирования ионизирующих излучений.

Поиск

Методы детектирования ионизирующих излучений.

Любой радиометрический прибор имеет в качестве основной части детектор (счетчик), подающий в усилительно-измерительную схему сигналы о поступлении ионизирующих частиц или гамма-квантов. Существуют ионизационные, полупроводниковые и сцинтилляционные детекторы.

Детектор ионизирующего излучения - это устройство, преобразующее энергию излучения в другой вид энергии, удобный для последующей регистрации. Среди методов детектирования, то есть физических принципов, положенных в основу работы детектора, можно выделить три основные группы:

1) ионизационные методы;

2) сцинтилляционные методы;

3) полупроводниковые методы.

В зависимости от агрегатного состояния рабочего вещества детектора, то есть среды, в которой происходит преобразование энергии, детекторы также делят на газовые, жидкостные и твердотельные.

Сцинтилляционные методы детектирования

Группа сцинтилляционных методов основана на свойстве некоторых веществ (чистых или содержащих определенную примесь) преобразовывать поглощенную энергию ионизирующего излучения в электромагнитное излучение ультрафиолетового или видимого диапазона (то есть светиться). Такие вещества называются радиолюминофорами, а свечение, которое образуется под действием ионизирующего излучения, называется радиолюминесценцией.

При прохождении каждой регистрируемой частицы в радиолюминофоре возникает вспышка радиолюминесценции, которую называют сцинтилляцией. Если эта вспышка достаточно короткая и интенсивная, то такой радиолюминофор применяют в качестве детектора ионизирующего излучения и называют сцинтиллятором.

Однако сами по себе вспышки могут быть очень слабыми. Для их фиксации применяются фотоэлектронные умножители (ФЭУ). Они представляют собой вакуумные электронные приборы с системой умножения электронов, выбитых световой вспышкой с поверхности фотокатода. Умножительная система состоит из нескольких последовательно расположенных динодов (эмиттеров), покрытых специальным слоем. Электроны, бомбардирующие диноды, выбивают из них вторичные электроны, количество которых минимум в 2 раза превышает число первичных электронов. Таким образом, каждый последующий динод увеличивает количество электронов. С последнего динода в усилительно-измерительную схему прибора поступает лавина электронов. Благодаря ФЭУ сцинтилляционные счетчики обладают гораздо большей чувствительностью по сравнению с газонаполненными счетчиками.

Для регистрации альфа-частиц в качестве сцинтилляторов (люминофоров) применяют тонкий слой сернистого цинка, а регистрация бета-частиц осуществляется с помощью кристаллов антрацена, стильбена, а также сцинтиллирующих пластмасс. При регистрации гамма-квантов в отечественных приборах успешно используются монокристаллы йодистого натрия и йодистого цезия, активизированные таллием.

Полупроводниковые детекторы

Они сходны с ионизационными, но роль ионизационной камеры в этом случае выполняют твердые полупроводники (чаще всего германий). Поскольку плотность полупроводниковых материалов намного выше плотности газов, то энергия поглощаемых частиц в них используется полнее, чем в ионизационных камерах. Поэтому полупроводниковые детекторы обладают очень высокой разрешающей способностью.

Основными характеристиками счетчиков, работающих как на основе ионизационного метода регистрации, так и на основе сцинтилляционного, являются:

Эффективность счетчика (эффективность регистрации частиц) выражается отношением числа зарегистрированных частиц к полному числу частиц, попавших в чувствительный объем детектора. Другими словами, это вероятность регистрации частицы. Так эффективность счетчиков Гейгера-Мюллера по отношению к бета-частицам близка к 100%. Эффективность сцинтилляционных детекторов зависит не только от эффективности собственно сцинтиллятора, но и от работы ФЭУ. Свойства систем «сцинтиллятор+ФЭУ» могут существенно отличаться в связи с чрезвычайным разнообразием веществ, используемых в качестве сцинтилляторов, конструкций и режимов работы ФЭУ. В целом эффективность сцинтилляционных детекторов выше, чем газоразрядных счетчиков, особенно по отношению к электромагнитному излучению высокой энергии.

Разрешающим временем счетчика («мертвым временем» счетчика) называют минимальный промежуток времени между двумя последовательными импульсами, которые регистрируются раздельно. Для счетчиков Гейгера-Мюллера оно составляет примерно 10-2 – 10-4 с. Для сцинтилляционных счетчиков оно может значительно отличаться в зависимости от сцинтиллятора и ФЭУ, но в большинстве случаев значительно меньше – 10-6-10-8 с. Если две частицы попадают в детектор с промежутком меньшим, чем разрешающее время, то они регистрируются как одна.

Счетной характеристикой счетчика называют зависимость числа зарегистрированных импульсов в единицу времени от напряжения, приложенного к газоразрядному счетчику или ФЭУ (при неизменной интенсивности облучения детектора). Обычно, исследовав счетную характеристику данного прибора, выбирают рабочее напряжение в той области, где такая зависимость становится наименьшей (так называемое плато счетной характеристики). По форме счетной характеристики судят о качестве детектора.

Минатом

Подавляющее большинство ядерно- и радиационно опасных объектов находятся в подчинении Минатома (Министерства по атомной энергии Российской Федерации), которое несет ответственность за их безопасность. В этой связи Минатом России решает следующие основные задачи:

- Обеспечение экологической безопасности, непревышение научно обоснованного уровня радиационного воздействия на население и окружающую природную среду в зонах влияния деятельности предприятий и организаций ядерно-промышленного комплекса (ЯПК).

- Охрана окружающей среды от вредного воздействия техногенных факторов, рациональное использование природных ресурсов и ядерных материалов.

- Устранение экологических последствий и вреда, нанесенного природной среде предприятиями и организациями ЯПК при создании ядерного оружия и вследствие радиационных аварий.

Основные мероприятия Минатома, обеспечивающие охрану окружающей среды:

• нормирование потребления природных ресурсов, сырья, материалов, образования отходов, выбросов и сбросов радиоактивных и вредных химических веществ в окружающую среду, вредных физических воздействий;

• экологический аудит;

• сертификация оборудования, изделий и технологий;

• экологическая экспертиза плановой, предпроектной, проектной документации и важнейших управленческих решений;

• лицензирование экологически опасных (и ответственных) видов деятельности.

Росгидромет

Глобальный контроль за радиоактивным загрязнением объектов окружающей среды на территории России осуществляется системой радиационного мониторинга Росгидромета (полное название - «Федеральная служба России по гидрометеорологии и мониторингу окружающей среды»). Эта система базируется на пунктах наблюдения за мощностью экспозиционной дозы (около 1300), радиоактивными атмосферными выпадениями (около 400), радиоактивными аэрозолями (более 50), содержанием трития в атмосферных осадках (более 30), концентрацией 90Sr в водах рек, пресных водоемов (более 40) и морей (15). Мониторинг радиоактивного загрязнения природной среды в системе Росгидромета выполняется систематически и регулярно, и его результаты открыты обществу (в частности, ежегодники Росгидромета «Радиационная обстановка на территории России и сопредельных государств», ежегодные Государственные доклады «О состоянии окружающей природной среды Российской Федерации»).

Территориальную структуру Росгидромета образуют Управления по гидрометеорологии и мониторингу окружающей среды (УГМС), каждое из которых охватывает несколько субъектов федерации. Им подчинены центры мониторинга окружающей среды областного (краевого, республиканского) уровня.

Госатомнадзор

Главные функции по надзору за ядерной и радиационной безопасностью в России осуществляет Госатомнадзор (ГАН, полное название «Федеральный надзор России по ядерной и радиационной безопасности»). Это федеральный орган исполнительной власти (то есть независимый от Минатома и других организаций, подчиняющийся только Правительству России), который отвечает за безопасность использования атомной энергии, ядерных материалов, радиоактивных веществ и ионизирующего излучения. Инспекторы ГАН анализируют все аспекты радиационно или ядерно-опасного производства (или его строительства), и любая деятельность, связанная соответствующими технологиями, ведется только с разрешения ГАН и под его контролем.

Методы детектирования ионизирующих излучений.

Любой радиометрический прибор имеет в качестве основной части детектор (счетчик), подающий в усилительно-измерительную схему сигналы о поступлении ионизирующих частиц или гамма-квантов. Существуют ионизационные, полупроводниковые и сцинтилляционные детекторы.

Детектор ионизирующего излучения - это устройство, преобразующее энергию излучения в другой вид энергии, удобный для последующей регистрации. Среди методов детектирования, то есть физических принципов, положенных в основу работы детектора, можно выделить три основные группы:

1) ионизационные методы;

2) сцинтилляционные методы;

3) полупроводниковые методы.

В зависимости от агрегатного состояния рабочего вещества детектора, то есть среды, в которой происходит преобразование энергии, детекторы также делят на газовые, жидкостные и твердотельные.



Поделиться:


Последнее изменение этой страницы: 2016-12-11; просмотров: 1468; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.195.30 (0.007 с.)