Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Задача 4.1. определить прямоугольные координаты вершин треугольника.Содержание книги
Поиск на нашем сайте
Для решения задачи каждому студенту необходимо иметь ксерокопию карты, на которой преподаватель наносит вершины треугольника АВС. Прежде чем приступить к решению задачи необходимо определить масштаб карты и разобраться с оцифровкой сетки координат. Затем выделить квадрат километровой сетки, в которой находится вершина треугольника и выписать координаты его юго-западного угла. На рис. 11 для точки А Х=6068 км, Y=4312 км (напоминаем, что первая цифра у ординаты означает номер зоны, в которой находится данная карта). Из точки А опускают перпендикуляры на стороны квадрата километровой сетки. С помощью измерителя и масштабной линейки определяют длины перпендикуляров относительно южной и западной стороны квадрата. То есть измеряют приращения координат. Тогда значения координат точки А будут равны: XA=Xю.з.+ ∆XA (4) YA=Yю.з..+ ∆YA (5) Недостатком изложенного способа является его бесконтрольность. Здесь любая грубая ошибка в измерении остается незамеченной. Поэтому на практике измеряют не только отрезки ∆ХА и ∆YA, но и продолжения их до северной и восточной сторон километровой сетки, т.е., ∆ХА ´ и ∆YA´. Очевидно, что при отсутствии погрешности в измерениях должны выполнятся условия ∆XA +∆ХА´=D (6) ∆YA+∆YA´=D (7) где D – длина стороны квадрата километровой сетки. Практически таких равенств не получается из-за случайных и систематических погрешностей измерений (деформация бумаги, не точность установки игл измерителей в вершины, погрешности построения поперечного масштаба и т.д.). Однако величина неравенства не должна превышать 0.3 мм в масштабе карты. Если это условие выполняется, то окончательные координаты точки А можно вычислить по формулам.
XA=Xю.з+(D/(∆XA +∆ХА´))∆XA, (8)
YA=Yю.з+(D/(∆YA +∆YB´))∆YA. (9). Данные формулы и рекомендуется использовать при решении задачи 4.1. результаты измерений записывают в таблицы 2 и 3.
В качестве примера в этих таблицах приведены результаты измерения координат вершин треугольника АВС (см. Приложение 1) Абсциссы точек А, В,С. (км) Таблица2.
Ординаты точек А,В,С (км) Таблица 3.
Задача 4.2. По измеренным в задаче 4.1 прямоугольным координатам вычислить длины сторон треугольника и сравнить их с непосредственно измеренными. Задача распадается на 2 части. В первой части необходимо вычислить длины сторон по известной в математике формуле dAB=√(XA-XB)²+(YA-YB)². (10) вычисленные расстояния записать в таблицу 4 с числом значащих цифр, б соответствующих точности масштаба карты. Вторая часть задачи состоит в непосредственном измерении длин сторон треугольника с помощью измерителя и построенного поперечного масштаба. Результаты измерений также записать в таблицу 4. Найти расхождения между вычисленными и измеренными длинами сторон треугольника и дать анализ их соответствия точности масштаба карты. Перечислить причины возникновения этих расхождений. Значения длин сторон треугольника, полученные при вычислениях и измерениях.
Вопросы для самоконтроля.
Ориентировать линию или карту – значит определить ее расположение относительно географического (истинного), осевого или магнитного меридианов.
Угол ориентирования, отсчитываемый от северного направления географического меридиана, называется истинным азимутом. Трудность такого ориентирования связана с изменением величины азимута от протяженности длины линии и широты точки, в которой он измеряется. Данное обстоятельство вызвано тем, что меридианы не параллельны друг другу. Угол между проекциями смежных меридианов на плоскости называется сближением меридианов и обозначается буквой γ и вычисляется по формуле γ=(LA-LM) sin B, (11), где LA и LM – долготы меридианов, проходящих через точки А и М, В – широта точки А. Поэтомупри измерении истинного азимута линии АМ не безразлично в какой точке (А или М) производится измерение угла. Так как значения сближения меридианов изменяется, то и азимут ААМ ≠АВА+180 °. Однако, при измерении азимутов по крупномасштабным картам задача упрощается. Это связано с низкой точностью измерения углов транспортиром и малой протяженностью линии. Действительно, даже геодезическим транспортиром точность измерения угла не превышает ±15΄. А если учесть, что протяженность линии на карте масштаба 1:50 000по долготе не превышает 15΄, то для средних широт (В=55°) по формуле (11) получим γ≈12´. То есть сближение крайних меридианов карты не больше 12´, а это как видим, меньше точности измерения углов транспортиром. Для карт более крупного масштаба величина сближения меридианов в пределах данной карты будет еще меньше, а следовательно, ее можно не учитывать при измерении истинных азимутов по карте. Это позволяет производить их измерение в любой точке линии. Задача 5.1. Измерить с помощью транспортира азимуты линий АВ, ВС, СА, ВА, СВ, АС. Вычислить румбы и внутренние углы треугольника АВС. Для измерения азимута линии АВ необходимо провести географический меридиан, пересекающий сторону АВ треугольника (приложение 1) или продолжить сторону АВ до пересечения с меридианом, ограничивающим лист карты с запада или востока. От северного направления этого меридиана по ходу часовой стрелки транспортиром измерить искомый угол ориентирования. Результат измерения занести в таблицу 5. Точно также измерить азимуты остальных сторон. От азимутов перейти к румбам и вычислить величины внутренних углов треугольника, используя правило: угол равен разности правого и левого направлений. Если измерения не содержат грубых погрешностей, то расхождения между значениями прямых и обратных азимутов должно быть точно 180°. Сумма внутренних углов треугольника также должна быть равна 180°. Отклонения от этих величин не должны превышать тройной точности транспортира. В качестве примера в таблице 5 приведены значения азимутов сторон треугольника АВС (приложение 1)
Таблица 5
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-10; просмотров: 1162; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.60.175 (0.007 с.) |