Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Значения, используемые для вычислений по уравнению регрессионной прямойСодержание книги
Поиск на нашем сайте
При линейной зависимости, т. е. такой, которая может быть представлена прямой линией, любое определенное изменение независимой переменной всегда вызывает определенное изменение значений зависимой переменной У. Более того, при таких зависимостях норма изменения постоянна, т. е. независимо от конкретных значений X и Y каждое изменение Х на единицу вызовет некоторое определенное изменение Y, размер которого определен степенью наклона линии регрессии. Зависимости, при которых небольшие изменения Х вызывают относительно [c.430] большие изменения Y, изображаются линиями, имеющими сравнительно крутой наклон (b 1). Зависимости, при которых большие изменения X вызывают меньшие изменения Y, изображаются прямыми с относительно пологим наклоном (b). Зависимости, при которых изменение Х на единицу вызывает изменение Y на единицу, изображаются прямыми, для которых b =1. Прямые, направленные вверх слева направо, как на рис. 15.4а и 15.4б, имеют положительный наклон и представляют зависимости, в которых увеличение Х вызывает увеличение Y. Прямые, направленные вниз слева направо, как на рис. 15.4г и 15.4д, имеют отрицательный наклон и представляют зависимости, в которых увеличение X вызывает уменьшение Y. Ясно, что угол наклона прямой – это просто норма изменения переменной Y на единицу изменения переменной X, т.е. в нашем примере, где b =0,12, линия регрессии будет направлена вниз слева направо и, если обе переменные изображены в одном масштабе, будет относительно пологой. Для того чтобы прийти к формуле, которую мы использовали для подсчета наклона линии регрессии, нам необходимо принять, что линия проходит через пересечение средних геометрических переменных и Y. Это – разумное допущение, поскольку средние геометрические представляют основную тенденцию этих переменных и поскольку мы, в сущности, ищем обобщенную или объединенную тенденцию. Если оба геометрических средних нам известны, а значение b определено, мы легко может найти значение а (точки, в которой линия регрессии пересекает ось Y) и решить уравнение. Общее уравнение регрессии таково:
Y’ = a + bXi, а в точке, где линия регрессии проходит через пересечение двух средних геометрических, оно принимает вид: = a + bХ. Из этого следует, что a = – b Поскольку теперь мы знаем все нужные значения, мы можем определить, что [c.431] а = 12,88–(–0,12)(37,08)= 12,88+4,45= 17,33. Таким образом, уравнение регрессии, наилучшим образом подытоживающее распределение линии для данных, представленных на рис. 18.3, будет выглядеть так: Y’ = 17,33–0,12 Х. Используя это уравнение, мы можем вычислить значение Y для любого конкретного значения. Поскольку это уравнение решено, мы можем использовать коэффициент корреляции (r) для оценки репрезентативности линии регрессии. Формула rXY (коэффициента корреляции между X и Y) такова: , где Х – каждое значение независимой переменной (знак i применялся ранее для большей наглядности); Хотя это утверждение, безусловно, не так уж очевидно, а его алгебраическое доказательство лежит за рамками нашей книги, эта рабочая формула получена из сравнения первичной ошибки в предполагаемых значениях Y с использованием среднего геометрического частотного распределения с реальной ошибкой, получившейся в результате определения значений Y с использованием Y' (уравнения линии регрессии). Таким образом, процедура подсчета r аналогична той, которая использовалась для подсчета как l, так и G. Наилучшим образом ее дополнит построение таблицы такого типа, с которой мы уже знакомы; в ее колонках расположены значения X, Y, XY, X 2 и Y 2. Суммы, которые и нужны в уравнении, расположены в графе итого. Так, для данных, представленных на рис. 15.3, для которых мы уже определили линию регрессии, такой схемой будет табл. 15.7. [c.432] Таблица 15.7 Значения, используемые при определении коэффициента корреляции (r)
Мы подставляем итоговые значения в уравнение:
Это говорит нам о том, что наклон у линии регрессии отрицательный (что мы уже, собственно, знали) и что точки [c.433] группируются вокруг нее в ступени от слабой до умеренной (поскольку г изменяется в пределах от +1 до –1 с минимальной связью при r =0). К сожалению, сам коэффициент r интерпретировать нелегко. Можно, однако, интерпретировать r 2 как степень уменьшения ошибки в определении Y на основании значений X, т. е. доля значений Y, которые определяются (или могут быть объяснены) на основе Х. r 2обычно представляют как процентную долю объясненных значений, тогда как (1– r 2)– долю необьясненных значений. Так, в нашем примере r значением –0,38 означает, что для тех случаев, которые мы анализируем, разброс независимой переменной составляет (–0,38)2, или около 14%, значений зависимой переменной год обучения. По причинам, которые находятся за рамками настоящего разговора, определить статистическую значимость г можно только в том случае, если обе – и зависимая и независимая – переменные нормально распределены. Это можно сделать, используя табл. А.5 в Приложении А, для чего нужны следующие сведения. Во-первых, сам коэффициент г, который, конечно, известен. Во-вторых, аналогично подсчету χ2 количество степеней свободы линии регрессии. Поскольку прямую определяют любые две точки (в нашем случае пресечение и – первая точка, и пересечение с осью Y – вторая), все другие точки, обозначающие данные, могут располагаться произвольно, так что df всегда будет равно (N –2), где N – количество случаев или признаков. Таким образом, для того чтобы воспользоваться таблицей, нужно определить примерное количество степеней свободы (в нашем примере N –2 = 25–2 = 23) и желательный уровень значимости (например, 0,05) так же, как мы делали для нахождения χ2, определить пороговое значение r, необходимое для достижения данного уровня значимости, и все подсчитать. (В нашем примере это значит, что мы интерполируем значения в таблице между df =20 и df =25. Для df =23 это будут следующие значения: 0,3379; 0,3976; 0,5069; 0,6194 соответственно.) Таким образом, r =–0,38 статистически значим на уровне 0,10 (он превышает 0,3379), но не на уровне 0,05 (он не превышает 0,3976). Интерпретация этого результата та же, что и в других случаях измерения статистической значимости. [c.436] ЗАКЛЮЧЕНИЕ В этой главе мы познакомили вас с наиболее распространенными статистическими процедурами, которые используются при изучении взаимосвязей между двумя переменными. Как и в гл. 14, мы выяснили, что для разных уровней измерения анализируемых данных подходят разные способы вычисления связи и статистической значимости. Вместе с методами, представленными ранее, рассмотренные коэффициенты снабдят исследователя некоторыми очень полезными основополагающими способами получения научных результатов. В следующей главе мы обратимся к более сложным статистическим методикам, которые обогатят наши возможности анализа и понимание того, что мы изучаем. [c.437] Дополнительная литература Библиографию по статистике см. к гл. 16.
|
||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-13; просмотров: 158; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.237.68 (0.007 с.) |