Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Ферменты бактерий. Их классификация по механизму действия, характеру субстрата. Связи с бактериальной клеткой.↑ ⇐ ПредыдущаяСтр 5 из 5 Содержание книги
Поиск на нашем сайте
В бактериальной клетке происходят многочисленные реакции, как биосинтетические, направленные на синтез соединений, необходимых для организации структуры бактерии, так и производящие энергию, процессы ассимиляции и диссимиляции. Все эти реакции катализируются соответствующими ферментами. Ферменты являются белками и обладают специфичностью при распознавании соответствующего вещества и последующем превращении его. Большая часть ферментов связана с определенными структурами бактериальной клетки. Так, в цитоплазматической мембране находятся окислительно-восстановительные ферменты, которым принадлежит основная роль в дыхании клетки, ферменты, обеспечивающие доставку питательных веществ, и др. Ферменты, связанные с делением клетки, обнаруживаются в мезосомах, клеточной стенке, в месте образования перегородки. У бактерий по характеру вызываемых ими превращений обнаруживаются следующие основные группы ферментов: г и д р о л а з ы, вызывающие расщепление протеинов, углеводов, липидов путем присоединения молекул воды; оксидоредуктазы, катализирующие окислительно-восстановительные реакции; трансфера з ы, осуществляющие перенос отдельных атомов, от молекулы к молекуле; л и а з ы, отщепляющие химические группы негидролитическим путем; изомеразы, участвующие в углеводном обмене; л и г а з ы, способствующие биосинтетическим реакциям клетки. Ферменты бактерий классифицируются на экзоферменты и эндоферменты. Экзоферменты выделяются бактериальной клеткой в окружающую среду для внеклеточного переваривания. Этот процесс осуществляется с помощью гидролаз, которые расщепляют макромолекулы питательных веществ до простых соединений — глюкозы, аминокислот, жирных кислот. Такие соединения могут свободно проходить через оболочку клетки и с помощью пермеаз передаваться в цитоплазму клетки для участия в метаболизме, являясь источниками углерода и энергии. Некоторые экзоферменты выполняют защитную функцию, например, пенициллиназа, выделяемая многими бактериями, делает клетку недосягаемой для антибиотика — пенициллина. Эндоферменты катализируют метаболические реакции, происходящие внутри клетки. Ферменты бактерий классифицируются также на конститутивные и индуцибельные. Конститутивными называются такие ферменты, которые синтезируются клеткой независимо от наличия субстрата в среде, индуцибельные ферменты образуются бактериями только при наличии в среде соответствующего индуцирующего соединения, т. е. субстрата данного фермента. Например, в геноме кишечной палочки заложена способность разлагать лактозу, но только при наличии в среде лактозы клеткой синтезируется фермент, катализирующий ее гидролиз. Известны также ферменты, которые получили название аллостерических. Кроме активного центра у них имеется регуляторный или аллостерический центр, который в молекуле фермента пространственно разделен с активным центром. Аллостерическим (от греч. allos - иной, чужой) он называется потому, что молекулы, связывающиеся с этим центром, по строению (стерически) не похожи на субстрат, но оказывают влияние на связывание и превращение субстрата в активном центре, изменяя его конфигурацию. Молекула фермента может иметь несколько аллостерических центров. Вещества, связывающиеся с аллостерическим центром, называют аллостерическими эффекторами. Они влияют через аллостерический центр на функцию активного центра: или облегчают ее, или затрудняют. Соответственно аллостерические эффекторы называются положительными (активаторы) или отрицательными (ингибиторы). Аллостерические ферменты играют важную роль в тонкой регуляции метаболизма бактерий. Поскольку практически все реакции в клетке катализируются ферментами, регуляция метаболизма сводится к регуляции интенсивности ферментативных реакций. Патогенные бактерии обладают наряду с ферментами обмена также ферментами агрессии, являющимися факторами вирулентности. К таким ферментам относятся гиалуронидаза, дезоксирибонуклеаза, коллагеназа, н е й р а м и и и д аза, и др. Гиалуронидаза стрептококков, например, расщепляет гиалуроновую кислоту в мембранах клеток соединительных тканей макроорганизма, что способствует распространению возбудителей и их токсинов в организме, обуславливая высокую инвазивность этих бактерий. Плазмокоагулаза является главным фактором патогенности стафилококков, так как участвует в превращении протромбина в тромбин, который вызывает образование фибриногена, в результате чего каждая бактерия покрывается пленкой, предохраняющей ее от фагоцитоза. Ферменты бактерий обладают высокой специфичностью, и именно это свойство широко используется при идентификации и определении видов микроорганизмов. Наибольшее значение имеет определение сахаролитических (ферментация сахаров) и протеолитических (разложение белков) свойств. Микробные ферменты широко используются в медицине и промышленности. Так, получаемые из Aspergillus niger кислотоустойчивая амилаза и протеаза применяются как лекарства, способствующие пищеварению; с этой же целью используются липаза (из Rhizopus) и диастаза (из Aspergillus orizae). Для заживления ран и ожогов могут применяться стрептокиназа (из Streptococcus sp.) и коллагеназа (из CI. Hislolyticum). Виды плазмид, их значение. Плазмиды бактерий представляют собой двунитевые молекулы ДНК размером от 10 6 до 10 8 Д, несущие от 40 до 50 генов. Количество плазмид в бактериальной клетке может быть от 1 до 200. Выделяют плазмиды, находящиеся в виде отдельной замкнутой молекулы ДНК (эписомы) и встроенные в хромосому бактерии (интегрированные плазмиды). Плазмиды выполняют регуляторные и кодирующие функции. Первые направлены на компенсацию метаболических дефектов, вторые вносят в бактерию информацию о новых признаках. Как составляющая часть генетического материала бактерии плазмиды играют важную роль в ее жизнедеятельности, детерминируя такие характеристики, как способность продуцировать экзотоксины, ферменты или бактериоцины, устойчивость к лекарственным препаратам и т.д. Удвоение ДНК некоторых плазмид индуцирует деление бактерий, т.е. увеличивает их «плодовитость». Такие плазмиды обозначают как F -плазмиды или F -факторы (от англ. fertility - плодовитость). Интегрированные F -плазмиды называют Hfr -плазмиды или Hfr -факторы (от англ. high frequency of recombinations - высокая частота рекомбинаций). Hfr -факторы осуществляют перенос части генетической информации данной хромосомы в другую клетку. Плазмиды, детерминирующие устойчивость к лекарственным препаратам, называются R -плазмидами или R -факторами (от англ. resistance - устойчивость). R -плазмиды содержат гены, детерминирующие синтез ферментов, которые разрушают антибактериальные препараты. В результате бактериальная клетка становится устойчивой к действию целой группы лекарственных веществ. Многие R -плазмиды являются трансмиссивными и, распространяясь в популяции бактерий, переносят резистентность к воздействию антибактериальных препаратов. Плазмиды патогенности контролируют вирулентные свойства микроорганизмов, детерминируя синтез факторов патогенности. Так, например, Ent -плазмида определяет синтез энтеротоксина. Развитие инфекционного процесса, вызванного возбудителями чумы, сибирской язвы, кишечного иерсиниоза, клещевого иксодового боррелиоза связано с функционированием плазмид патогенности. Конъюгативные плазмиды переносятся от бактерии к бактерии внутри вида или между представителями близкородственных видов в процессе конъюгации. Чаще всего конъюгативными плазмидами являются F - или R -плазмиды. Подобные плазмиды относительно крупные (25-150 млн Д) и часто выявляются у грамотрицательных палочек. Большие плазмиды обычно присутствуют в количестве 1-2 копий на клетку и их репликация тесно связана с репликацией бактериальной хромосомы. Неконъюгативные плазмиды обычно имеют небольшие размеры и характерны для грамположительных кокков, но встречаются также у некоторых грамотрицательных микроорганизмов (например, у Haemophilus influenzae, Neisseria gonorrhoeae). Мелкие плазмиды могут присутствовать в больших количествах (более 30 на клетку), так как только наличие такого количества обеспечивает их распределение в потомстве во время клеточного деления. При наличии в бактерии одновременно конъюгативных и неконъюгативных плазмид донор может передавать и неконъюгативные плазмиды за счет связывания генетического материала последних с факторами, обеспечивающими их перенос в процессе конъюгации. Подвижные генетические элементы входят в состав бактериального генома, бактериальной хромосомы и плазмид. К ним относятся вставочные последовательности в ДНК и транспозоны. Вставочные или инсерционные последовательности (Is -элементы) представляют собой участки ДНК, способные перемещаться из одного места локализации в другое, и содержат только гены, необходимые для перемещения. Is -последовательности осуществляют координацию взаимодействий плазмид, умеренных фагов, транспозонов и нуклеоида для обеспечения репродукции; регулируют активность генов бактериальной клетки. Они могут инактивировать гены, в которые включились («выключение» гена) или, встраиваясь в хромосому, проявлять эффект промотора, включающего или выключающего транскрипцию соответствующих генов.
|
||||
Последнее изменение этой страницы: 2016-09-20; просмотров: 1788; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.67.56 (0.006 с.) |