Методы микроскопии. Темнопольная, фазово-контрастная, люминесцентная и электронная микроскопия. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Методы микроскопии. Темнопольная, фазово-контрастная, люминесцентная и электронная микроскопия.



Методы микробиологической диагностики

Методы лабораторной диагностики инфекционных агентов многочисленны, к основным можно отнести следующие.

1. Микроскопический- с использованием приборов для микроскопии. Определяют форму, размеры, взаиморасположение микроорганизмов, их структуру, способность окрашиваться определенными красителями.

К основным способам микроскопии можно отнести световую микроскопию (с разновидностями - иммерсионная, темнопольная, фазово - контрастная, люминесцентная и др.) и электронную микроскопию. К этим методам можно также отнести авторадиографию (изотопный метод выявления).

2.Микробиологический (бактериологический и вирусологический) - выделение чистой культуры и ее идентификация.

3.Биологический - заражение лабораторных животных с воспроизведением инфекционного процесса на чувствительных моделях (биопроба).

4.Иммунологический (варианты - серологический, аллергологический) - используется для выявления антигенов возбудителя или антител к ним.

5.Молекулярно- генетический - ДНК- и РНК- зонды, полимеразная цепная реакция (ПЦР) и многие другие.

Заключая изложенный материал, необходимо отметить теоретическое значение современной микробиологии, вирусологии и иммунологии. Достижения этих наук позволили изучить фундаментальные процессы жизнедеятельности на молекулярно- генетическом уровне. Они обусловливают современное понимание сущности механизмов развития многих заболеваний и направления их более эффективного предупреждения и лечения.

Способы микроскопирования

Светлопольная микроскопия позволяет исследовать объекты в проходящем свете в светлом поле. Данный вид микроскопии предназначен для исследования морфологии, размеров клеток, их взаимного расположения, структурной организации клеток и других особенностей. Максимальная разрешающая способность светового микроскопа составляет 0,2 мкм (минимальное расстояние, при котором различимы два объекта). Общее увеличение складывается из произведения увеличений объектива и окуляра. Разрешение микроскопа можно увеличить за счет увеличения коэффициента преломления (иммерсии). В микроскопии применяют несколько иммерсионных систем: масляную, глицериновую, водную.

Фазово-контрастная микроскопия ценна прежде всего тем, что с ее помощью можно наблюдать живые объекты, которые имеют коэффициенты преломления, близкие к коэффициентам преломления среды. С точки зрения увеличения изображения объекта, никакого выигрыша не происходит, однако прозрачные объекты видны более четко, чем в проходящем свете обычного светлопольного микроскопа. При отсутствии специального микроскопа обычный световой может быть оснащен специальным фазово-контрастным устройством, которое переводит фазовые изменения световых волн, проходящих через объект в амплитудные. В результате этого живые прозрачные объекты становятся контрастными и видными в поле зрения.

С помощью фазово-контрастной микроскопии изучают форму, размеры, взаимное расположение клеток, их подвижность, размножение, прорастание спор микроорганизмов и т. д.

Темнопольная микроскопия основана на освещении объекта косыми лучами света (эффект Тиндаля). При таком освещении лучи не попадают в объектив, поэтому поле зрения выглядит темным. Если в исследуемом препарате содержатся клетки микроорганизмов, то косые лучи отражаются от их поверхности, отклоняются от своего первоначального направления и попадают в объектив. На интенсивно черном фоне видны сияющие объекты. Такое освещение препарата достигается использованием специального темнопольного конденсора, которым заменяют обычный конденсор светлопольного микроскопа.

При микроскопировании в темном поле можно увидеть объекты, величина которых измеряется сотыми долями микрометра, что находится за пределами разрешающей способности обычного светлопольного микроскопа. Однако наблюдение за объектами в темном поле позволяет исследовать только контуры клеток и не дает возможности рассмотреть их внутреннюю структуру.

Люминесцентная микроскопия основана на способности ряда веществ биологического происхождения или некоторых красителей светиться под действием падающего на них света. Микроорганизмы, содержащие хлорофилл, витамин В12, алкалоиды, некоторые антибиотики, обладают первичной люминесценцией. Клетки микроорганизмов, в которых люминесценция слабо выражена или отсутствует, обрабатывают специальными красителями - флуорохромами (акридиновый оранжевый, примулин, родамин и др.) в виде сильно разбавленных водных растворов: 1:500 -1:100000. Такие растворы слабо токсичны, что дает возможность изучать неповрежденную клетку. В зависимости от химического состава клеточные структуры в разной степени адсорбируют красители и люминесцируют различным образом. Кроме того, флуорохромы неодинаково адсорбируются живыми и мертвыми клетками. Это позволяет использовать данный вид микроскопии для цитологических и иммунологических исследований, определения жизнедеятельности клеток, изучения микроорганизмов в почве, воде и т.д. Проведение люминесцентной микроскопии предполагает использование специальных микроскопов (например, МЛ-2).

Разработанные на основе люминесцентной микроскопии иммунофлю-оресцентные методы используются для визуализации иммунохимических реакций, основанных на специфическом взаимодействии антигена изучаемого объекта и меченых флюоресцентными красителями антител.

Электронная микроскопия позволяет обнаружить объекты, которые не разрешаются при использовании световых или ультрафиолетовых лучей. Короткая длина волны электронов, которая уменьшается в прямой зависимости от подаваемого ускоряющего напряжения, позволяет различить объекты размером 0,5 - 1,0 нм (или больше чем 0,0002 мкм). В современных электронных микроскопах достигается увеличение на экране или пленке в 5000 -15000 раз. Благодаря столь высокому увеличению становится возможным выявление деталей бактериальных структур.

Например, с помощью напыления солей тяжелых металлов, окружающих бактерию и проникающих в поверхностные неровности, получают контрастирование за счет дифференциальной задержки электронов. Этот эффект получил название негативного контрастирования.

Детали внутреннего строения выявляют на срезах бактерий, залитых в полимерный материал. Предварительно бактерии фиксируют и обрабатывают солями тяжелых металлов для получения необходимого контраста. Часть электронов проходит через образец, а другие рассеиваются компонентами структуры, в результате чего формируется изображение на экране или пленке. Электронный микроскоп, в котором изображение формируется благодаря прохождению (просвечиванию) электронов через образец, называют просвечивающим, или трансмиссионным.

В сканирующем (растровом) микроскопе, как следует из названия, пучок электронов быстро сканирует поверхность образца, вызывая излучение, которое формирует изображение на светящемся экране. Сканирующий микроскоп дает картину поверхностей и позволяет получать сразу трехмерное изображение.

Помимо вышеуказанных, разработаны также и другие методы визуализации:

1. Компьютерная интерференционная микроскопия позволяет получить высококонтрастное изображение при наблюдении субклеточных структур.

2. Лазерная конфокальная микроскопия дает возможность получить четкое изображение и наблюдать объекты в фокусе по всему полю. При сочетании с компьютерной техникой возможна пространственная реконструкция изучаемого объекта.

3. Рентгеновская микроскопия, позитронная эмиссионная томография позволяют наблюдать объекты не в вакууме, а в обычных условиях.

Механизмы питания бактерий.

Поступление в бактериальную клетку питательных веществ представляет собой сложный физико-химический процесс, которому способствует ряд факторов: разница в концентрации веществ, величина молекул, их растворимость в воде или липидах, рН среды, проницаемость клеточных мембран и т. д. В проникновении питательных веществ в клетку различают четыре возможных механизма.

Наиболее простой способ — пассивная диффузия, при которой поступление вещества в клетку происходит из-за различия градиента концентрации (разницы концентрации по обе стороны цитоплазматической мембраны). Решающее значение имеет величина молекулы. Очевидно, в мембране есть участки, через которые и возможно проникновение веществ небольших размеров. Одним из таких соединений является вода.

Большинство питательных веществ попадает в бактериальную клетку против градиента концентрации, поэтому в таком процессе должны принимать участие ферменты и может расходоваться энергия.

Одним из таких механизмов является облегченная диффузия, которая происходит при большей концентрации вещества вне клетки, чем внутри. Облегченная диффузия — процесс специфический и осуществляется особыми мембранными белками, переносчиками, получившими название п е р м е а з, так как они выполняют функцию ферментов и обладают специфичностью. Они связывают молекулу вещества, переносят в неизмененном виде к внутренней поверхности цитоплазматической мембраны и высвобождают в цитоплазму. Так как перемещение вещества происходит от более высокой концентрации к более низкой, этот процесс протекает без затраты энергии.

Третий возможный механизм транспорта веществ поучил название активного переноса. Этот прессе наблюдается при низких концентрациях субстрата в окружающей среде и перенос растворенных веществ также в неизмененном виде осуществляется против градиента концентрации. В активном переносе веществ участвуют пермеазы. Поскольку концентрация вещества в клетке может в несколько тысяч раз превышать ее во внешней среде, активный перенос обязательно сопровождается затратой энергии. Расходуется аденозинтрифосфат (АТФ), накапливаемый бактериальной клеткой при окислительно-восстановительных процессах.

при четвертом возможном механизме переноса питательных веществ наблюдается транслокация радикалов — активный перенос химически измененных молекул, которые в целом виде не способны проходить через мембрану. В переносе радикалов участвуют пермеазы.

Синтезируемые в бактериальных клетках соединения выходят из них тремя путями:

Фосфотрансферазная реакция. Происходит при фосфорилировании переносимой молекуды.

Контрансляционная секреция. В этом случае синтезируемые молекулы должны иметь особую лидирующую последовательность аминокислот, чтобы прикрепиться к мембране и сформировать канал, через который молекулы белка смогут выйти в окружающую среду. Таким образом выходят из клетки соответствующих бактерий токсины столбняка, дифтерии и др. молекулы.

Почкование мембраны. Молекулы, образующиеся в клетке, окружаются мембранным пузырьком, который отшнуровывается в окружающую среду.



Поделиться:


Последнее изменение этой страницы: 2016-09-20; просмотров: 3132; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.223.125.219 (0.011 с.)