Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Спадковий апарат людини:будова та характеристика (днк та рнк).

Поиск

Дезоксирибонуклеї́нова кислота́ (ДНК) — один із двох типів природних нуклеїнових кислот, який забезпечує зберігання, передачу з покоління в покоління і реалізацію генетичної програми розвитку й функціонування живих організмів. Основна роль ДНК в клітинах — довготривале зберігання інформації про структуру РНК і білків.

У клітинах еукаріотів (наприклад, тварин, рослин або грибів) ДНК знаходиться в ядрі клітини в складі хромосом, а також в деяких клітиннихорганелах (мітохондріях і пластидах). У клітинах прокаріотів (бактерій і архей) кільцева або лінійна молекула ДНК, так званий нуклеоїд, знаходиться в цитоплазмі і прикріплена зсередини до клітинної мембрани. У них і у нижчих еукаріот (наприклад дріжджів) зустрічаються також невеликі автономні кільцеві молекули ДНК, так звані плазміди. Крім того, одно- або дволанцюгові молекули ДНК можуть утворювати геномДНК-вірусів.

З хімічної точки зору, ДНК — це довга полімерна молекула, що складається з послідовності блоків — нуклеотидів. Кожний нуклеотид складається з азотистої основи, цукру (дезоксирибози) і фосфатної групи (або гомологічної арсеноїдної). Зв'язки між нуклеотидами в ланцюжку утворюються за рахунок дезоксирибози і фосфатної групи. У переважній більшості випадків (окрім деяких вірусів, що містять одноланцюжкові ДНК) макромолекула ДНК складається з двох ланцюжків, орієнтованих азотистими основами один проти одного. Ця дволанцюжкова молекула утворює спіраль. В цілому структура молекули ДНК отримала назву «подвійної спіралі».

У ДНК зустрічається чотири види азотистих основ (аденін, гуанін, тимін і цитозин) (виняток становлять випадки пізніших модифікацій нуклеотидів, наприклад метилювання). Азотисті основи одного з ланцюжків сполучені з азотистими основами іншого ланцюжка водневими зв'язками згідно з принципом комплементарності: аденін з'єднується тільки з тиміном, гуанін — тільки з цитозином. Послідовність нуклеотидів дозволяє «кодувати» інформацію про різні типи РНК, найважливішими з яких є інформаційні, або матричні (мРНК), рибосомальні (рРНК) і транспортні (тРНК). Всі ці типи РНК синтезуються на матриці ДНК (тобто за рахунок копіювання послідовності ДНК у послідовність макромолекули, що синтезується) у процесі транскрипції і беруть участь у біосинтезі білків (процесах сплайсингу і трансляції). Крім кодуючих послідовностей, ДНК клітини містить послідовності, що виконують регуляторні і структурні функції. Ділянки кодуючої послідовності разом ізрегуляторними ділянками називаються генами.

У геномах еукаріотів містяться також довгі послідовності без очевидної функції (некодуючі послідовності, інтрони). Також у складі геному досить поширені генетичні паразити — транспозони і вірусні або схожі на них послідовності.

Розшифровка структури ДНК (виконана в 1953 році) стала одним з поворотних моментів в історії біології. За видатний внесок у це відкриттяФренсісу Кріку, Джеймсу Ватсону і Морісу Вілкінсу була присуджена Нобелівська премія з фізіології і медицини 1962 року.

ДНК була відкрита Іоганном Фрідріхом Мішером у 1869 році. Спочатку нова речовина отримала назву нуклеїн, а пізніше, коли Мішер визначив, що ця речовина володіє кислотними властивостями, речовина отримала назву нуклеїнова кислота[1]. Біологічна функція нововідкритої речовини була неясна, і довгий час ДНК вважалася запасником фосфору в організмі. Більш того, навіть на початку 20 століття багато біологів вважали, що ДНК не має ніякого відношення до передачі інформації, оскільки будова молекули, на їхню думку, була дуже одноманітною і не могла містити закодовану інформацію.

Поступово було доведено, що саме ДНК, а не білки, як вважалося раніше, є носієм генетичної інформації. Одними з перших вирішальних доказів стали експерименти О. Евері, Коліна Мак-Леода і Маклін Мак-Карті (1944 рік) з трансформації бактерій. Їм вдалося показати, що за так звану трансформацію (придбання хвороботворних властивостей нешкідливою культурою у результаті додавання до неї мертвих хвороботворних бактерій) відповідає виділена з пневмококів ДНК. Експеримент американських учених Алфреда Хершу і Марти Чейз (1952 рік) з міченими радіоактивними ізотопами білками і ДНК бактеріофагів показали, що в заражену клітину передається тільки нуклеїнова кислота фага, а нове покоління фага містить такі ж білки і нуклеїнову кислоту, як і початковий фаг[2].

До 50-х років 20 століття точна будова ДНК, як і спосіб передачі спадкової інформації, залишалася невідомою. Хоч і було напевно відомо, що ДНК складається з кількох ланцюжків, що у свою чергу складаються з нуклеотидів, ніхто не знав точно, скільки цих ланцюжків і як вони сполучені.

Структура подвійної спіралі ДНК була запропонована Френсісом Кріком і Джеймсом Ватсоном у 1953 році на основі рентгеноструктурних даних, отриманих Морісом Вілкінсом і Розаліндою Франклін, і «правил Чаргаффа», згідно з якими в кожній молекулі ДНК дотримуються строгі співвідношення, що зв'язують між собою кількість азотистих основ різних типів[3]. Пізніше запропонована Ватсоном і Кріком модель будови ДНК була доведена, а їхня робота відмічена Нобелівською премією з фізіології і медицини 1962 року. Серед одержувачів не було Розалінди Франклін, що померла на той час, оскільки премія не присуджується посмертно[4].

У відомій доповіді 1957 року, Крік окреслив основи так званої «Центральної догми» молекулярної біології, яка передбачає взаємовідношення між ДНК, РНК і білками, та сформулював«адаптерну гіпотезу»[5]. Остаточне підтвердження механізму копіювання, запропонованого на основі спіральної структури, було отримане в 1958 році за допомогою експерименту Мезельсона-Сталя[6]. Подальші роботи Кріка і його лабораторії показали, що генетичний код засновується на трійках основ, що не перекриваються, кодонах, що пізніше дозволилоГару Ґобінду Хорані, Роберту Голлі і Маршаллу Ніренбергу розшифрувати генетичний код[7]. Ці відкриття позначають початок молекулярної біології.

РНК (рибонуклеїнова кислота) — клас нуклеїнових кислот, лінійних полімерів нуклеотидів, до складу яких входять залишок фосфорної кислоти, рибоза (на відміну від ДНК, що містить дезоксирибозу) і азотисті основи — аденін, цитозин, гуанін і урацил (на відміну від ДНК, що містить замість урацила містить тимін). РНК містяться головним чином в цитоплазмі клітин. Ці молекули синтезуються в клітинах всіх клітинних живих організмів, а також містяться в віроїдах та деяких вірусах. Основні функції РНК в клітинних організмах — шаблон длятрансляції генетичної інформації в білки та поставка відповідних амінокислот до рибосом. В вірусах є носієм генетичної інформації (кодує білки оболонки та ферменти вірусів). Віроїди складаються з кільцевої молекули РНК та не містять в собі інших молекул. Існує гіпотеза світу РНК, згідно з якою, РНК виникли до білків й були першими формами життя.

Клітинні РНК утворюються в ході процесу, що зветься транскрипцією, тобто синтезу РНК на матриці ДНК, що здійснюється спеціальними ферментами — РНК-полімерази. Потім матричні РНК (мРНК) беруть участь у процесі, що називається трансляцією. Трансляція — це синтез білка на матриці мРНК за участю рибосом. Інші РНК після транскрипції піддаються хімічним модифікаціям, і після утворення вторинної та третинної структур виконують функції, що залежать від типу РНК.

Для одноланцюжкових РНК характерні різноманітні просторові структури, в яких частина нуклеотидів одного і того ж ланцюга спарені між собою. Деякі високо структуровані РНК беруть участь у синтезі білка клітини, наприклад, транспортні РНК служать для впізнавання кодонів та доставки відповідних амінокислот до місця синтезу білка, а матричні РНК служать структурною і каталітичною основою рибосом.

Однак функції РНК в сучасних клітинах не обмежуються їх роллю в трансляції. Так малі ядерні РНК беруть участь у сплайсингу еукаріотичних матричних РНК та інших процесах.

Крім того, що молекули РНК входять до складу деяких ферментів (наприклад, теломерази) у окремих РНК виявлена власна ензиматична активність, здатність вносити розриви в інші молекули РНК або, навпаки, «склеювати» два РНК-фрагмента. Такі РНК називаються рибозимами.

Геноми ряду вірусів складаються з РНК, тобто у них вона відіграє роль, яку у вищих організмів виконує ДНК. На підставі різноманітності функцій РНК в клітині була висунута гіпотеза, згідно з якою РНК — перша молекула, здатна до самовідтворення в добіологічних системах.

Нуклеїнові кислоти були відкриті в 1868 році швейцарським учений Іоганном Фрідріхом Мішер, який назвав ці речовини «нуклеін», оскільки вони були виявлені в ядрі (лат. nucleus). Пізніше було виявлено, що бактеріальні клітини, в яких немає ядра, теж містять нуклеїнові кислоти. Значення РНК в синтезі білків було припущено в 1939 році в роботі Торберна Оскара Касперсона, Жана Брачета і Джека Шульца. Джерард Маірбакс виділив першу матричну РНК, що кодує гемоглобін кролика і показав, що при її введені в ооцити утворюється той же самий білок. У Радянському Союзі в 1956-57 роках проводилися роботи (А. Білозерський, О. Спірін, Е. Волкін, Ф. Астрахан) з визначення складу РНК клітин, які привели до висновку, що основну масу РНК в клітині становлять рибосомні РНК. Северо Очоа отримав Нобелівську премію з медицини в 1959 році за відкриття механізму синтезу РНК. Послідовність з 77 нуклеотидів однієї з тРНК дріжджів S. cerevisiae була визначена в 1965 році в лабораторії Роберта Холі, за що в 1968 році він отримав Нобелівську премію з медицини. У 1967 Карл Воуз припустив, що РНК мають каталітичні властивості. Він висунув так звану Гіпотезу РНК-світу, в якому РНК прото-організмів служила і як молекули зберігання інформації (зараз ця роль виконується ДНК) і молекули, яка каталізувала метаболічні реакції (зараз це роблять ферменти). У 1976 Уолтер Фаерс і його група з Гентського університету (Голландія) визначили першу послідовність геному РНК- яке міститься у вірусі, бактеріофага MS2. На початку 1990-х було виявлено, що введення чужорідних генів у геном рослин призводить до придушення вираження аналогічних генів рослини. Приблизно в цей же час було показано, що РНК довжиною близько 22 підстав, які зараз називаються мікро-РНК, відіграють регуляторну роль в онтогенезі нематод C.elegans. Гіпотеза про значення РНК в синтезі білків була висловлена Торбьерном Касперссоном (Torbjörn Caspersson) на основі досліджень 1937–1939.

Нуклеотиди РНК складаються з цукру — рибози, до якої в положенні 1 'приєднано одна з азотистих основ: аденін, гуанін, цитозин або урацил. Фосфатна група поєднує рибози в ланцюжок, утворюючи зв'язку з 3 'атомом вуглецю однієї рибози і в 5' становищі іншого. Фосфатні групи при фізіологічному рН негативно заряджені, тому РНК — поліаніонів. РНК транскрибується як полімер чотирьох азотистих основ: (аденіну (A), гуаніну (G), урацилу (U) і цитозину (C)), але в «зрілої» РНК є багато модифікованих основ і цукрів. Всього в РНК налічується близько 100 різних видів модифікованих нуклеозидів, з яких 2'-О-метилрибоза найчастіша модифікація цукру, а псевдоуридин — найбільш часто зустрічавана модифікована азотиста основа. У псевдоуридину (Ψ) зв'язок між урацилом і рибозою не C — N, а C — C, цей нуклеотид зустрічається в різних положеннях у молекулах РНК. Зокрема, псевдоуридин важливий для функціонування тРНК. Також заслуговує на увагу модифікована основа — гіпоксантин, деамінований гуанін, нуклеозид якого носить назву інозину. Інозин відіграє важливу роль у забезпеченні виродженності генетичного коду. Роль багатьох інших модифікацій не до кінця вивчена, але в рибосомальної РНК багато пост-транскрипційних модифікацій знаходяться у важливих для функціонування рибосоми ділянках. Наприклад, на одному з рибонуклеотидів, що беруть участь в утворенні пептидного зв'язку.

Хромосоми:типи і будова.

Хромосоми - нуклеопротеїдні структури в ядрі еукаріотичноїклітини (клітини, що містить ядро), які стають легко помітними в певних фазах клітинного циклу (під час мітозу або мейозу). Хромосоми являють собою високий ступінь конденсації хроматину, постійно присутнього в клітинному ядрі. Початковотермін був запропонований для позначення структур, що виявляються в еукаріотичних клітинах, але в останні десятиліття все частіше говорять про бактеріальних хромосомах. У хромосомах зосереджена велика частина спадкової інформації.

Хромосоми еукаріот мають складну будову. Основу хромосоми становить лінійна (не замкнута в кільце) макромолекула дезоксирибонуклеїнової кислоти (ДНК) значної довжини (наприклад, в молекулах ДНК хромосом людини налічується від 50 до245 000 000 пар азотистих основ). У розтягнутому вигляді довжина хромосоми людини може досягати 5 см. Крім неї, до складу хромосоми входять п'ять спеціалізованих білків - H1 H2A, H2B, H3 і H4 (так звані гістони) і ряд негістонових білків. Послідовність амінокислотгістонів висококонсерватівна і практично не розрізняється в різних групах організмів. В інтерфазі хроматин не конденсувалася, але і в цей час його нитки являють собою комплекс з ДНК і білків. Макромолекула ДНК обвиває октомери (структури, що складається з восьмибілкових глобул) гістонових білків H2A, H2B, H3 і H4 утворюючи структури, названі Нуклеосома.

В цілому вся конструкція трохи нагадує намиста. Послідовність з таких нуклеосом, з'єднаних білком H1 називається нуклеофіламентом (nucleofilament), або нуклеосомнойниткою, діаметром близько 10 нм. У ранній інтерфазі (фаза G1) основу кожної з майбутніх хромосом становить одна молекула ДНК. У фазі синтезу (S) молекули ДНК вступають в процес реплікації і подвоюються. У пізній інтерфазі (фаза G2) основа кожної з хромосом складається з двохідентичних молекул ДНК, що утворилися в результаті реплікації і з'єднаних між собою в районі центромерного послідовності. Перед початком розподілу клітинного ядра хромосома, представлена ​​на цей момент ланцюжком нуклеосом, починає спіралізовиваться, абоупаковуватися, утворюючи за допомогою білка H1 більш товсту хроматіновие нитка, або хроматид, (chromatin fiber) діаметром 30 нм. В результаті подальшої спіралізаціі діаметр хроматиди досягає до часу метафази 700 нм. Значна товщина хромосоми (діаметр 1400 нм) на стадіїметафази дозволяє, нарешті, побачити її в світловий мікроскоп.

Конденсована хромосома має вигляд літери X (часто з нерівними плечима), оскільки дві хроматиди, що виникли в результаті реплікації, як і раніше з'єднані між собою в районі центромери. Кожнаклітина тіла людини містить в точності 46 хромосом. Хромосоми завжди хлопця. У клітці завжди є по 2 хромосоми кожного виду, пари відрізняються один від одного по довжині, формі і наявності потовщень або перетяжок. У більшості випадків хромосоми доситьрізняться, щоб цитолог міг відрізнити пари хромосом (всього 23 пари).

Слід зазначити, що у всіх соматичних клітинах (всі клітини організму, крім статевих) хромосоми в парах завжди однакові по величині, формі, розташуванню центромер, у той час як статевіхромосоми (23-а пара) у чоловіків не однакові (ХУ), а у жінок однакові (ХХ). Хромосоми в клітці під мікроскопом можна побачити тільки під час поділу - мітозу, під час стадії метафази. Такі хромосоми називаються метафазних. Коли клітина не ділиться хромосоми мають виглядтонких, Темна ниток, званих хроматином.

Хроматин являє собою дезоксірібонуклеопротеід, що виявляються під світловим мікроскопом у вигляді тонких ниток і гранул. У процесі мітозу (поділу клітини) хроматин шляхом спіралізацііутворює добре видимі (особливо в метафазі) інтенсивно забарвлюються структури - хромосоми. Метафазних хромосома складається з двох поздовжніх ниток дезоксірібонуклеопротеіда - хроматид, з'єднаних один з одним в області первинної перетяжки - Центромера.

Найбільш частим хромосомним захворюванням у людини є синдром Дауна, Обумовлений трисомией (до пари нормальних хромосом додається ще одна така ж, зайва) по 21-й хромосомі. Зустрічається цей синдром з частотою 1-2 на 1000. Нерідко трисомія по 21 парі хромосом є причиною загибелі плоду, проте іноді люди з синдромом Дауна доживають до значного віку, хоча в цілому тривалість їхнього життя скорочена.



Поделиться:


Последнее изменение этой страницы: 2016-09-20; просмотров: 343; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.37.85 (0.009 с.)