Метод подзаряда малым током. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Метод подзаряда малым током.



Величина тока от 0,03 А до 0,5 А. Используется для компенсации тока саморазряда и поддержания АКБ в заряженном состоянии, также для восстановления ее емкости в тренировочном цикле.

Автоматический метод заряда. Современный, оптимальный метод заряда батарей, состоящий из двух этапов. На первом этапе производится заряд АКБ током постоянной силы 0,1Ср, после того как напряжение АКБ возрастет и достигнет 14,4-14,8 В (напряжения ограничения), дальнейшая подзарядка происходит при постоянном напряжении с автоматически уменьшающимся током.

Этот метод исключает отрицательные эффекты, присущие вышеперечисленным способам. Он обеспечивает автоматическое поддержание оптимальной скорости заряда, не допуская опасного для батареи перенапряжения, приводящего к обильному газовыделению и кипению электролита.

При правильно выбранном напряжении величина силы тока уменьшается до значения, компенсирующего саморазряд А=E.

Техника безопасности при зарядке АКБ:

  • Производить заряд АКБ разрешается только в помещениях с подходящей приточно-вытяжной вентиляцией.
  • Во время заряда выделяется взрывчатая смесь водорода и кислорода, вредная для жизни и взрывоопасная.
  • Не подходите к аккумулятору, особенно во время заряда, с открытым огнем или зажженной сигаретой. Не производите никаких действий, способствующих образованию искры.
  • При выключенном двигателе и всех потребителях электроэнергии отсоедините как описано выше и выньте аккумулятор из автомобиля (при зарядке батареи на автомобиле обязательно отсоедините электрические кабели и следуйте инструкции автомобиля).
  • Аккумулятор заряжается только постоянным током.
  • Запрещено осуществлять заряд аккумулятора высокими зарядными токами.

 

1.2.4 Проверка емкости аккумулятора мультиметром

Для профессиональной проверки емкости АКБ применяется тестер аккумуляторов Кулон. При отсутствии тестера аккумуляторов (когда нет необходимости в высокой точности), можно воспользоваться мультиметром [6] (приложение 1).

Порядок проведения проверки емкости АКБ:

1. Зажигание автомобиля должно быть выключенным;

2. Ставим переключатель режимов работы мультиметра в положение DCV (постоянное напряжение) на цифру 20 или ближайшую к ней в сторону увеличения;

3. Красный щуп к клемме «+», черный «-» (рисунок 1.2);

4. Значение напряжения считываем с экрана, или отсчитываем по шкале(в зависимости от конструкции прибора).

5. Степень заряженности АКБ контролируется по напряжению на клеммах АКБ. У полностью заряженного АКБ с номинальным напряжением 12В. напряжение на клеммах должно быть в пределах 12,6 – 13,0В (таблица 1.1).

6. Если меньше 12,6 В, то:

- Машина долго стояла (саморазряд+мелкие потребители типа сигнализации);

- Есть значительная утечка тока, снимаем любую клемму и в разрыв включаем тестер в режиме амперметра. Должно быть около 30-40мА (например нормальная сигнализация). Если больше - ищите утечку, если у вас не навешано потребителей типа пары дополнительных сигнализаций, камер слежения, аудиоаппаратуры в "спящем" режиме и т.п...

ВАЖНО: Не пытайтесь таким способом измерить пусковой ток, отдаваемый батареей при пуске двигателя. Ваш прибор может не выдержать и сгореть, а Вы можете получить хороший удар током;

- Батарея старая, и подлежит замене, в противном случае предстоит замена генератора.

Рисунок 1.2 – Проверка степени заряженности АКБ

 

Таблица 1.1 – Степень заряженности АКБ

Напряжение на клеммах, В Степень заряженности, %
12,6 100%
12,4 75%
12,2 50%
12,0 25%
11,8 батарея разряжена

Примечание: Если напряжение ниже 11V - батарею в утиль, есть риск сжечь зарядное устройство или генератор.

 

1.3 Порядок выполнения работы и составления отчета

1.3.1 Изучить самостоятельно теоретический материал по теме практической работы:

- устройство АКБ;

- маркировку АКБ;

- методы заряда АКБ;

- проверку емкости АКБ.

1.3.2 По имеющейся АКБ:

- расшифровать маркировку;

- описать, на какие автомобили возможна установка;

- провести проверку емкости АКБ;

- дать заключение.

 

1.4 Контрольные вопросы

1.4.1 Назначение и устройство АКБ?

1.4.2 Перечислите обозначения, указываемые при маркировке АКБ?

1.4.3 Расскажите об особенностях зарядки АКБ.

1.4.4 Расскажите порядок проверки емкости АКБ.


Практическая работа № 2 (2 часа)

Генератор переменного тока

 

2.1 Цель работы: изучить устройство, принцип работы генератора переменного тока, а также проводить проверку генератора мультиметром.

 

2.2 Теоретическая часть

2.2.1 Устройство генератора переменного тока

Генератор – одно из важнейших устройств автомобиля (рисунок 2.1). Без него становиться невозможным нормальное функционирование всех блоков, узлов и приборов, которым нужна электрическая энергия. После запуска двигателя автогенератор включается на запитывание бортовой сети, а также на зарядку аккумуляторной батареи. Важно следить и периодически проверять натяжение ремня генератора. От этого зависит не только срок службы самого ремня, но и нормальная зарядка аккумуляторной батареи. При неправильной регулировке ремень может проскальзывать, в результате чего будет вырабатываться недостаточное напряжение. В такой ситуации аккумуляторная батарея не будет получать необходимый заряд и со временем может разрядиться [7].

2.2.2 Принцип работы генератора переменного тока

Генератор переменного тока приводиться в работу с помощью коленчатого вала через ремень привода. Он превращает механическую энергию, созданную двигателем автомобиля, в электрическую.

Вращающаяся часть привода называется ротором. Как правильно, в основных моделях это электрический магнит, обеспечивающий магнитное поле, которое в дальнейшем передается на статор.

Через коллекторные (роторные) кольца и щетки передается напряжение. Роторные кольца — это медные кольца, расположенные на задней части самого ротора. Они вращаются с ротором и коленчатым валом. Щетки прижимаются пружинами к кольцам. Щетки находятся на месте и не трутся поперек колец, что позволяет току передаваться от неподвижной части генератора к вращающейся.

Статор – это внешняя часть генератора переменного тока. Он состоит из трех катушек с проводом, окружающих ротор.

Магнитное поле, произведенное вращением ротора в статоре тоже вращается. Так как поле передвигается поперек катушек статора, оно производить электро потоки в них. Именно эти потоки заряжают аккумулятор.

Аккумулятор – это постоянный ток. Генератор переменного тока – переменный. Для того, чтобы переделать переменный в постоянный то необходим диодный мост. Он и расположен в задней части привода.

На диодном мосте обычно располагаются 9-10 диодов (диод — устройство с 2 контактами, позволяющее электрическому потоку проходить в одном направлении через него.)

Основные диоды, выпрямляющие напряжение для заряжения аккумулятора соединяются с тремя выводами статора. Кроме этого, выводы статора соединены с дополнительными диодами, дающие напряжение регулятору напряжения и лампе контролирующей зарядку.

Лампа, контролирующая зарядку, необходима генератору постоянного тока для контроля исправности привода и для запуска генератора. Генератор постоянного тока без лампы не запуститься на стандартных оборотах.

 

Рисунок 2.1 – Устройство автомобильного генератора переменного тока:

1 – задний подшипник; 2 – выпрямительный блок; 3 – контактные кольца; 4 – щетка; 5 – щеткодержатель; 6 – кожух; 7 – диод; 8 – втулка подшипника; 9 – винт; 10 – задняя крышка; 11 – крыльчатка; 12 – винт; 13 – ротор; 14 - обмотка статора; 15 – передняя крышка; 16 – вал ротора; 17 – шайба; 18 – гайка; 19 – шкив; 20 – передний подшипник; 21 – обмотка ротора; 22 - статор

2.2.3 Проверка исправности генератора переменного тока

В случае возникновения каких-либо проблем с электропитанием первый вопрос, который встает перед водителем – как проверить работу генератора. Разумеется, идеальный вариант провести диагностику на СТО. Но для выявления в полевых условиях (в собственном гараже) неисправности генератора, возможно при помощи обычного мультиметра.

Рассмотрим порядок диагностирования мультиметром:

1. Необходимо убедиться, что приводной ремень в хорошем состоянии и его натяжение в норме (приложение 2). Также проверить проводку генератора и аккумулятора (она должна быть в норме и не окислена, места крепления не ржавые).

2. Далее проверяем реле генератора. Перенапряжение в бортовой сети автомобиля способно вывести из строя различные приборы. Для поддержания правильной разности потенциалов используется реле-регулятор. Мультиметр переключаем в режим измерения напряжения. Заводим автомобиль. На клеммах АКБ или выходах генератора замеряем величину напряжения. Правильное значение должно быть в диапазоне 14-14.2 В. Нажимаем на акселератор (здесь понадобиться помощь помощника). Величина напряжение не должна измениться более чем на 0.5В. Если значения замеренных параметров отличаются от приведенных, это говорит о неправильной работе реле-регулятора.

3. Проверяем диодный мост, состоящий из шести диодов. Из них три можно назвать «положительными», а три – «отрицательными». Половина диодов имеет массу на аноде, а остальные – на катоде. Для проверки переводим мультиметр в режим «звука». Если замкнуть контакты щупов, будет слышен писк. Проверяем каждый диод в обоих направлениях. Писк должен быть слышен только в одном. Если диод звонится в обе стороны – значит, он пробит и его нужно менять. Желательно в таком случае произвести замену сразу всего моста.

4. Проверяем статор генератора. Данный блок выполнен в виде полого металлического цилиндра. Внутри уложена обмотка генератора. Для проверки нужно предварительно отсоединить от диодного моста выводы статора. Осматриваем состояние обмотки. Не должно быть подгораний и механических повреждений. Переводим тестер в режим измерения сопротивления. Проверяем обмотку на пробой. С этой целью замеряем сопротивление между корпусом статора и любым из выводов обмотки. Значение должно быть как можно большим, в идеале – стремящимся к бесконечности. Если тестер показывает меньше 50 КОм – значит, автогенератор скоро выйдет из строя.

5. Проверяем ротор генератора. Этот узел выполнен в виде металлического стержня, на который наматывается обмотка. На одном из концов стержня находятся кольца. По ним скользят щетки генератора. Извлекаем ротор и осматриваем состояние обмотки и подшипников. Проверяем мультиметром целостность обмотки. Замеряем сопротивление между контактными кольцами. Его значение должно быть порядка нескольких Ом. В случае короткого замыкания (сопротивление около нуля) или обрыва цепи требуется замена ротора.

 

Вышеописанный алгоритм может с успехом применяться как на большинстве современных автомобилей, так и на отечественных ВАЗ 2106, 2107, 2114 и т.д. главное условие – напряжение бортовой сети 12В.

 

2.3 Порядок выполнения работы и составления отчета

2.3.1 Изучить самостоятельно теоретический материал по теме практической работы:

- устройство генератора переменного тока;

- принцип работы генератора переменного тока;

- диагностика генератора переменного тока.

2.3.2 По имеющимся генераторам переменного тока:

- расшифровать маркировку;

- описать, на какие автомобили возможна установка;

- провести диагностику;

- дать заключение.

 

2.4 Контрольные вопросы

2.4.1 Поясните назначение, устройство и принцип работы генератора переменного тока?

2.4.2 Каким образом проводится диагностика генератора переменного тока?

2.4.3 Поясните порядок проверки состояния, регулировки натяжения и как проводится замена приводных ремней?

 

Практическая работа № 3 (2 часа)

Регуляторы напряжения

 

3.1 Цель работы: изучить назначение, виды и принцип действия регуляторов напряжения.

 

3.2 Теоретическая часть

3.2.1 Назначение регуляторов напряжения

Регулятор напряжения поддерживает напряжение бортовой сети в заданных пределах во всех режимах работы при изменении частоты вращения ротора генератора, электрической нагрузки, температуры окружающей среды [9]. Кроме того, он может выполнять дополнительные функции - защищать элементы генераторной установки от аварийных режимов и перегрузки, автоматически включать в бортовую сеть цепь обмотки возбуждения или систему сигнализации аварийной работы генераторной установки.

3.2.2 Виды и устройство регуляторов напряжения

Конструкция, технология изготовления и схемное исполнение регуляторов напряжения тесно связаны друг с другом [10]. Основные тенденции развития конструкций и схем обуславливаются стремлением миниатюризировать регулятор, чтобы при встраивании в генератор он занимал меньше места, увеличить число выполняемых им функции (например, наряду со стабилизацией напряжения сообщать о работоспособности генераторной установки, предотвращать разряд аккумуляторной батареи при неработающем двигателе), а также повысить качество выходного напряжения.

Вибрационные реле-регуляторы (рисунок 3.1, а) и контактно-транзисторные регуляторы (рисунок 3.1, б) в настоящее время полностью заменены электронными транзисторными регуляторами напряжения. С развитием электроники наметились существенные изменения в схемном и конструктивном решениях электронных регуляторов. Теперь их можно разделить на две группы - регуляторы традиционного схемного исполнения с частотой переключения, меняющейся с изменением режима работы генератора, и регуляторы со стабилизированной частотой переключения, работающие по принципу широтно-импульсной модуляции (ШИМ). По конструкции регуляторы традиционного схемного исполнения выполняются либо на навесных элементах, расположенных на печатной плат, либо в виде гибридных схем, регуляторы с ШИМ могут быть гибридного исполнения или полностью выполненными на монокристалле кремния. Число транзисторов в традиционных схемах невелико, обычно значительно меньше десятка, в регуляторах с ШИМ это число составляет несколько десятков. Последнее стало возможно с развитием электроники, так как в микросхемах, выполненных на монокристалле кремния, стоимость схемы мало зависит от числа транзисторов. Применение же ШИМ позволяет повысить качество стабилизации напряжения и предотвратить влияние на регулятор внешних воздействий.

 
а) б) в)   Рисунок 3.1 – Схемы регуляторов напряжения: а – простейшая схема вибрационного реле-регулятора; б – контактно-транзисторный регулятор напряжения РР362; в – Электронный транзисторный регулятор напряжения (1 – генератор; 2 – регулятор)

 

3.2.3 Принцип работы

Все регуляторы напряжения работают по единому принципу. Напряжение генератора определяется тремя факторами - частотой вращения ротора, силой тока, отдаваемой генератором в нагрузку, и величиной магнитного потока, создаваемой током обмотки возбуждения. Чем выше частота вращения ротора и меньше нагрузка на генератор, тем выше напряжение генератора. Увеличение силы тока в обмотке возбуждения увеличивает магнитный поток и с ним напряжение генератора, снижение тока возбуждения уменьшает напряжение.

Все регуляторы напряжения, отечественные и зарубежные, стабилизируют напряжение изменением тока возбуждения. Если напряжение возрастает или уменьшается, регулятор соответственно уменьшает или увеличивает ток возбуждения и вводит напряжение в нужные пределы.

Блок-схема регулятора напряжения представлена на рисунке 3.2.

 

 

Рисунок 3.2 – Блок-схема регулятора напряжения:

1 – регулятор; 2 – генератор; 3 – элемент сравнения; 4 – регулирующий элемент; 5 – измерительный элемент

 

Регулятор 1 содержит измерительный элемент 5, элемент сравнения 3 и регулирующий элемент 4. Измерительный элемент воспринимает напряжение генератора 2 Ud и преобразует его в сигнал Uизм., который в элементе сравнения сравнивается с эталонным значением Uэт.

Если величина Uизм. отличается от эталонной величины Uэт, на выходе измерительного элемента появляется сигнал Uo, который активизирует регулирующий элемент, изменяющий ток в обмотке возбуждения так, чтобы напряжение генератора вернулось в заданные пределы.

Таким образом, к регулятору напряжения обязательно должно быть подведено напряжение генератора или напряжение из другого места бортовой сети, где необходима его стабилизация, например, от аккумуляторной батареи, а также подсоединена обмотка возбуждения генератора. Если функции регулятора расширены, то и число подсоединений его в схему растет.

Чувствительным элементом электронных регуляторов напряжения является входной делитель напряжения. С входного делителя напряжение поступает на элемент сравнения, где роль эталонной величины играет обычно напряжение стабилизации стабилитрона. Стабилитрон не пропускает через себя ток при напряжении ниже напряжения стабилизации и пробивается, т.е. начинает пропускать через себя ток, если напряжение на нем превысит напряжение стабилизации. Напряжение же на стабилитроне остается при этом практически неизменным.

Ток через стабилитрон включает электронное реле, которое коммутирует цепь возбуждения таким образом, что ток в обмотке возбуждения изменяется в нужную сторону. В вибрационных и контактно-транзисторных регуляторах чувствительный элемент представлен в виде обмотки электромагнитного реле, напряжение к которой, впрочем, тоже может подводиться через входной делитель, а эталонная величина - это сила натяжения пружины, противодействующей силе притяжения электромагнита.

Коммутацию в цепи обмотки возбуждения осуществляют контакты реле или, в контактно-транзисторном регуляторе, полупроводниковая схема, управляемая этими контактами.

Особенностью автомобильных регуляторов напряжения является то, что они осуществляют дискретное регулирование напряжения путем включения и выключения в цепь питания обмотки возбуждения (в транзисторных регуляторах) или последовательно с обмоткой дополнительного резистора (в вибрационных и контактно- транзисторных регуляторах), при этом меняется относительная продолжительность включения обмотки или дополнительного резистора.

 

3.3 Порядок выполнения работы и составления отчета

3.3.1 Изучить самостоятельно теоретический материал по теме практической работы:

- назначение регулятора напряжения;

- виды и устройство регуляторов напряжения;

- принцип работы.

3.3.2 По своему варианту (приложение 3) составить отчет согласно пункта 3.3.1.

 

3.4 Контрольные вопросы

3.4.1 Поясните назначение, устройство и принцип работы регулятора напряжения?

3.4.2 Поясните в чем особенность автомобильных регуляторов напряжения?

3.4.3 Какие источники напряжения подводятся к регулятору напряжения?

 

Практическая работа № 4 (2 часа)



Поделиться:


Последнее изменение этой страницы: 2016-09-19; просмотров: 2447; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.136.97.64 (0.068 с.)