Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Строение и механизм действия

Поиск

Ферментативный катализ как основной путь протекания химических процессов в живой природе.

Механизм действия ферментов: равновесие реакции и энергия активации, каталитическая сила (карбоангидраза), специфичность, трансформация различных видов энергии. Активный центр и адсорбционный центр фермента. Каталитический центр фермента. Образование комплекса фермент•субстрат – первая стадия ферментативного катализа, основные нековалентные взаимодействия, участвующие в образовании ES-комплекса. Две модели взаимодействия субстрата с ферментом (Э. Фишера и Д. Кошланда).

Активный центр и механизм действия панкреатической рибонуклеазы. Ферменты как кислотно-основные катализаторы. Механизм действия сериновых протеаз как пример нуклеофильного катализа. Химическое взаимодействие субстратов с ферментами как промежуточная стадия ряда ферментативных реакций. Активный центр и механизм действия карбоксипептидазы. Участие кофакторов - ионов металлов в формировании активных центров некоторых ферментов. Электрофильный катализ в ферментативных реакциях. Участие специальных органических молекул (простетических групп) в формировании каталитических центров ферментов. Апоферменты и холоферменты. Коферменты - универсальные переносчики в ферментативных реакциях. Флавиновые нуклеотиды - флавинмононуклеотид и флавинадениндинуклеотид (FMN и FAD) как простетические группы ряда ферментов, катализирующих окислительно-восстановительные реакции (глюкозооксидаза). Организующая и определяющая роли апофермента по отношению к простетической группе. Зависимость функции простетических групп от природы апофермента на примере гема (гемоглобин, цитохром С и каталаза) и пиридоксальфосфата (катализ реакций переаминирования и декарбоксилирования аминокислот).

Кинетика ферментативных реакций. Уравнение Михаэлиса–Ментен (вывод с учетом ограничений). Параметры, характеризующие эффективность фермента: константа Михаэлиса и максимальная скорость ферментативной реакции. КМ как мера сродства субстрата к ферменту. Физический смысл величины Vmax. Графические методы определения величин КМ и Vmax (Лайнуивера–Берка, Иди–Хофсти и Эйзенталя–Корниш-Боудена). Эффекторы: активаторы и ингибиторы. Необратимое ингибирование. Конкурентное и неконкурентнее ингибирование. Аллостерические ингибиторы. Субъединичные ферменты. S-образные зависимости скорости ферментативной реакции от концентрации субстратов и эффекторов в субъединичных системах.

Классы ферментативных реакций

Классификация и систематическая номенклатура ферментов. Классы, подклассы и подподклассы. Коферменты.

Первый класс – оксидоредуктазы. Рациональная номенклатура. Подклассы. Дегидрогеназы. Никотинамидадениндинуклеотид (NAD+) и его фосфат (NADP+) – главные переносчики электронов. Оксидоредуктазы – флавопротеиды, глюкозооксидаза. Окислительное декарбоксилирование α-кетокислот с участием тиаминпирофосфата и липоамида. Цитохром С оксидаза как представитель гемопротеида. Каталаза. Окислительно-восстановительные реакции с участием кислорода. Оксидазы. Ферменты, катализирующие включение одного или двух атомов кислорода в окисляемые субстраты. Монооксигеназы. Цитохром Р-450 и его роль в выведении из организма гидрофобных соединений, в том числе лекарств и других ксенобиотиков.

Второй класс–- трансферазы. Рациональная номенклатура. Подклассы. Тетрагидрофолат как переносчик одноуглеродных фрагментов. Перенос метильных групп. S-аденозилметионин (его биосинтез из гомоцистеина) как универсальный переносчик метильных групп. Транскетолазы и трансальдолазы. Перенос ацильных остатков. Кофермент А (CoA). Перенос гликозидных остатков и его роль в синтезе олиго- и полисахаридов. Нуклеозиддифосфат сахара как универсальные переносчики гликозидных остатков. Перенос азотсодержащих групп, аминотрансферазы. Перенос остатков фосфорной кислоты, ее ангидридов и эфиров. Киназы. Аденозинтрифосфат как универсальный донор фосфата. Перенос нуклеотидных остатков. Полинуклеотидтрансферазы. ДНК- и РНК-полимеразы.

Третий класс – гидролазы. Рациональная номенклатура. Подклассы. Панкреатическая РНКаза как гидролаза сложноэфирных связей. Липазы и фосфатидазы как гидролазы эфиров карбоновых кислот (жиров и фосфолипидов). Гидролиз углеводов. Амилазы. Аденозилгомоцистеиназа – гидролаза тиоэфира. Пептидазы. Сериновые протеазы. Карбоксипептидаза. Специальные функции гидролаз. Ацетилхолинэстераза.

Четвертый класс – лиазы. Рациональная номенклатура. Подклассы. Углерод-углерод лиазы. Декарбоксилирование. Альдегидлиазы. Альдолазы. Лиазы кетокислот. Цитратсинтаза. Карбоангидраза – гидролиаза. Аденилатциклаза.

Пятый класс–- изомеразы. Классификация и номенклатура. Рацемазы и эпимеразы. Рибулозо-5-фосфат-3-эпимераза. UDP-глюкоза-4-эпимераза. Внутримолекулярные оксидоредуктазы. Глюкозо-6-фосфат-изомераза. Внутримолекулярные трансферазы – мутазы. Изомеризация углеродного скелета. Фосфоглицерат мутаза. S-метилмалонил-СоА мутаза. Кобаламидные коферменты.

Шестой класс – лигазы (синтетазы). Рациональная номенклатура. Синтез, сопряженный с гидролизом пирофосфатных связей в ATP или GTP. Подклассы. Аминоацил-тРНК синтетазы. Механизм действия. Промежуточное образование аминоациладенилатов. CoA-лигазы жирных кислот. Карбоксилирование с помощью лигаз. Участие биотина в зависимом от ATP карбоксилировании пирувата. ДНК- и РНК-лигазы, трехстадийный механизм катализа.

Типы реакций в живой клетке

Реакции присоединения. Окислительно-восстановительные реакции. Взаимодействие кислот и оснований. Реакции замещения. Нуклеофильный и электрофильный характер замещения. Реакции перегруппировки (изомеризации).

 

 

Биоэнергетические процессы. Генерирование и хранение метаболической энергии

 

Катаболические и анаболические процессы. Значение катаболических процессов для биоэнергетики клетки. Ферментативный распад белков, жиров и углеводов с образованием АТР – главного донора свободной энергии в клетке. Макроэргические связи в АТР. Факторы, определяющие макроэргичность фосфоангидридных связей АТР и ррi. Способы синтеза АТР. Енолфосфаты, ацилфосфаты, ацилтиоэфиры.

Никотинамидадениндинуклеотид (NAD+) и его фосфат (NADP+) - главные переносчики электронов, NADH и NADPH - промежуточные аккумуляторы энергии.

 

Окисление углеводов

Гликолиз и его основные этапы. Образование глюкозо-6-фосфата из глюкозы и гликогена. Изомеризация глюкозо-6-фосфат во фруктозо-6-фосфат. Получение фруктозо-1,6-дифосфата. Расщепление фруктозо-1,6-дифосфата до глицеральдегид-3-фосфата и дигидроксиацетонфосфата. Взаимопревращение триозофосфатов. Окисление глицеральдегид-3-фосфата до 3-фосфоглицерат, сопряженное с фосфорилированием карбоксильной группы. Механизм сопряжения. Образование макроэргической связи. Перенос фосфорильного остатка на ADP. Изомеризация 3-фосфоглицерата в 2- фосфоглицерат. Участие 1,3-дифосфоглицерата в реакции изомеризации. Дегидратация 2- фосфоглицерата и образование макроэргического соединения - фосфоенолпирувата. Пируваткиназа и образование ATP из ADP. Пируват, как конечный продукт гликолиза. Необратимые и лимитирующая реакции гликолиза. Регуляция гликолиза.

Превращение пирувата в анаэробных условиях. Молочно-кислое и спиртовое брожение. Биоэнергетический баланс анаэробного гликолиза. Превращение пирувата в аэробных условиях.

Пируватдегидрогеназный комплекс. Окислительное тиаминпирофосфат зависимое декарбоксилирование пирувата, сопровождающееся переносом остатка ацетальдегида на липоат. Образование ацетилкофермента А. Регенерация окисленного липоата. Энергетический баланс превращения глюкозы в ацетил-CoA. Необратимость и регуляция пируватдегидрогеназного комплекса.

 

Цикл трикарбоновых кислот

ЦТК (цикл лимонной кислоты, цикл Кребса ) как пример биохимического цикла и основной источник образования NADH из NAD+. Основные реакции ЦТК. Синтез цитрата из оксалоацетата и ацетил-СоА. Изомеризация цитрата в изоцитрат. Аконитаза. Окислительное декарбоксилирование изоцитрата. a-Оксоглутарат. Оксоглутаратдегидрогеназный комплекс, механизм, ферменты и коферменты. Перенос сукцинильного остатка на липоат. Образование сукцинил-СоА. Превращение сукцинил-СоА в сукцинат, сопряженное с фосфорилированием GDP. Окисление янтарной кислоты до фумаровой. Гидратация фумарата и образование малата. Окисление малата до оксалоацетата. Биоэнергетический баланс цикла трикарбоновых кислот. Регуляторные и лимитирующая реакции ЦТК. Регуляция ЦТК.

 

Цепь переноса электронов (окислительное фосфорилирование, дыхательная цепь)

Локализация процесса. 4 трансмембранных комплекса и перенос электронов от NADH или FADH2 к О2 с образованием АТР. Окисление NADH NADH-Q-оксидоредуктазным комплексом (I). Железо-серные комплексы и кофермент Q - убихинон. Окисление сукцината сукцинат-Q-редуктазным комплексом (II). Окисление восстановленного убихинона QН2-цитохром-с-редуктазным комплексом (III). Окисление восстановленного цитохрома с цитохром-с-оксидазным комплексом (IV). Цитохромы а и а3.

Сопряжение окисления и фосфорилирования ADP до АТР протонным градиентом. Возникновение трансмембранного градиента рН при переносе электронов и хемиоосмотическая гипотеза окислительного фосфорилирования. Генерация протонного градиента в трех трансмембранных комплексах (I, III, IV). АТР-синтезирующий комплекс митохондрий. Окисление цитоплазматического NADH дыхательной цепью. Глицеролфосфатный и малат-аспартатный челночные механизмы. Полный биоэнергетический баланс окисления глюкозы.

Окисление жирных кислот

Номенклатура жирных кислот. Гидролиз триацилглицеролов. Активация жирных кислот. Карнитин - переносчик активированных жирных кислот с длинной цепью через внутреннюю митохондриальную мембрану. Дегидрирование СН2-СН2-группы ацил-СоА. Гидратация двойной связи и образование b-гидроксиацил-СоА. Окисление оксигруппы до оксогруппы. Перенос b-ацильного остатка на СоА. Биоэнергетический баланс окисления пальмитиновой кислоты до ацетил-СоА. Деградация жирных кислот с нечетным числом атомов углерода. Карбоксилирование пропионил-СоА и изомеризация метилмалонил-СоА с участием биотина и кофермента В12. Биосинтез кетоновых тел. Образование ацетоацетил-СоА, присоединение третьей молекулы ацетил-СоА с образованием 3-гидрокси-3-метилглутарил-СоА. Цикл Линена. Кетоновые тела: ацетоацетат, 3-гидроксибутират и ацетон. Их роль в метаболизме.

 

Катаболизм аминокислот

Окислительное дезаминирование аминокислот оксидазами. Гидролитическое дезаминирование аспарагина и глутамина и элиминирующее дезаминирование серина. Реакции переаминирования между аминокислотами и a-кетоглутаратом. Глутамат- и аланин-аминотрансферазы. Дегидрогеназа глутаминовой кислоты.

Цикл мочевины как путь вывода аммиака из организма млекопитающих. Превращение аммиака в мочевину. Синтез карбамоилфосфата. Присоединение карбамоильного остатка к орнитину и образование цитруллина. Взаимодействие цитруллина с аспартатом с образованием аргининосукцината. Отщепление фумарата и образование аргинина. Замыкание цикла при гидролитическом отщеплении мочевины от аргинина. Биоэнергетический баланс цикла мочевины и его регуляция. Синтез фумарата – связующее звено цикла мочевины и ЦТК.

Превращения углеродных скелетов дезаминированных аминокислот. Образование пирувата и компонентов цикла трикарбоновых кислот, кетогенные и глюкогенные аминокислоты. Образование пирувата в процессах трансаминирования аланина и дезаминирования серина. Превращение аспарагиновой кислоты в фумарат и оксалоацетат. Катаболизм валина как пример деградации разветвленной углеродной цепи. Переаминирование и образование a-оксоизовалерата. Окислительное декарбоксилирование a-оксоизовалерата и образование изобутирил-СоА. Дегидрирование до метакрил-СоА. Гидратация с образованием b-оксиизобутират-СоА. Окисление до семиальдегида метилмалоновой кислоты. Повторное окисление до метилмалонил-СоА. Изомеризация с образованием сукцинил-СоА. Участие В12 - кофермента в реакции изомеризации. Декарбоксилирование аминокислот: серина, цистеина, треонина, аспартата и глутамата. Биогенные амины и их биологические функции.

Альтернативный путь окисления глюкозо-6-фосфата (гексозомонофосфатный шунт, пентозофосфатный путь).

Окислительная и восстановительная части процесса и их основные продукты. Окисление глюкозо-6-фосфата через глюконо-d-лактон-6-фосфат до 6-фосфоглюконата. Окислительное декарбоксилирование 6-фосфоглюконата до рибулозо-5-фосфата. Изомеризация рибулозо-5-фосфата в ксилулозо-5-фосфат и в рибозо-5-фосфат. Взаимопревращение пентоз и гексоз. Тиаминпирофосфат-зависимый перенос остатка гликолевого альдегида с ксилулозо-5-фосфата на рибозо-5-фосфат. Образование седогептулозо-7-фосфата и глицеральдегид-3-фосфата. Перенос остатка дигидроксиацетона с седогептулозо-7-фосфата на глицеральдегид-3-фосфата и образование фруктозо-6-фосфата и эритрозо-4-фосфата. Перенос остатка гликолевого альдегида с ксилулозо-5-фосфата на эритрозо-4-фосфат с образованием фруктозо-6-фосфата и глицеральдегид-3-фосфата. Полный итог взаимопревращения альдоз и кетоз - образование пяти молекул гексоз из шести молекул пентоз. Биоэнергетический баланс гексозо-монофосфатного шунта. Судьба глюкозо-6-фосфата – четыре механизма участия пентозофосфатного пути – в зависимости от преимущественных потребностей организма: 1) в рибозо-5 фосфате; 2) в NADPH и рибозо-5-фосфате; 3) в NADPH и 4) в NADPH и АТР.

Катаболизм нуклеотидов

 

Расщепление пуриновых нуклеотидов до мочевой кислоты и алантоина. Ресинтез пуриновых нуклеотидов.

Расщепление пиримидиновых нуклеотидов до β-Ala и β-аминоизобутирата.

Глюконеогенез

Синтез глюкозы из неуглеводных предшественников: лактата, аминокислот и глицерола.. Общие реакции для глюконеогенеза и гликолиза. Образование фосфоенолпирувата через промежуточное образование оксалоацетата. Превращение фосфоенолпирувата в гексозофосфат путем обращенной цепи гликолиза. Изменение энергетики при обращении стадий, идущих с существенным падением энергии Гиббса.

Фотосинтез

Локализация фотосинтеза в хлоропластах. Световые и темновые реакции фотосинтеза.

Световая стадия фотосинтеза как индуцированный светом перенос электронов от воды к NADP+. Хлорофиллы и концепция фотосинтетической единицы, реакционный центр. Две фотосистемы I и II. Фотосистема I. Восстановленный ферредоксин, и перенос электрона с него на NADP+ с образованием NADPH. Фотосистема II. Образование сильного окислителя. Окисление воды до молекулярного кислорода. Перенос электронов от системы II к системе I. Пластохинон, цитохромы b559, c552 (цитохром f) и пластоцианин - промежуточные переносчики электронов. Создание в процессе переноса электронов протонного градиента и запуск синтеза АТP. Циклическое фотосинтетическое фосфорилирование. Общий энергетический баланс световой стадии фотосинтеза.

Темновая стадия фотосинтеза (Цикл Кальвина). Взаимодействие СО2 с 1,5-рибулозодифосфатом с образованием двух молекул 3-фосфоглицерата. Рибулозодифосфат карбоксилаза. Фосфорилирование 3-фосфоглицерата с образованием 1,3-дифосфоглицерата и восстановление последнего с помощью NADPH до 3-фосфоглицеринового альдегида. Синтез гексозы из двух молекул триозофосфата. Цепь превращений альдозо- и кетозо-фосфатов при фотосинтезе с регенерацией в конце рибулозо-1,5-дифосфата.. Перенос двууглеродного остатка от фруктозо-6-фосфата на 3-фосфоглицериновый альдегид с образованием эритрозо-4-фосфата и ксилулозо-5-фосфата. Синтез седогептулозо-1.7-дифосфата из эритрозо-4-фосфата и дигидроксиацетонфосфата. Перенос двууглеродного остатка с седогептулозо-1.7-дифосфата на 3-фосфоглицериновый альдегид с образованием рибозо-5-фосфата и ксилулозо-5-фосфата. Изомеризация рибозо-5-фосфата и ксилулозо-5-фосфата в рибулозо-5-фосфат. Фосфорилирование рибулозо-5-фосфат и регенерация рибулозо-1,5-дифосфата. Биоэнергетический баланс синтеза одной молекулы гексозы из СО2. Регуляция цикла Кальвина.

 



Поделиться:


Последнее изменение этой страницы: 2016-09-13; просмотров: 213; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.108.87 (0.008 с.)