Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Соединения d-элементов с легкими неметаллами↑ ⇐ ПредыдущаяСтр 10 из 10 Содержание книги
Поиск на нашем сайте
Из огромного числа соединений d-элементов рассмотрим лишь те, которые образуются при взаимодействии металлов с легкими неметаллами – водородом, азотом, кислородом, кремнием, углеродом и бором. Гидриды d-элементов – темные порошки или хрупкие кристаллы с высокой электро- и теплопроводностью. В большинстве своем это соединения переменного состава с общей формулой MH1–x, MH3–x, где x меняется в широких пределах. Синтез гидридов IIIB–VB подгрупп сопровождается значительным выделением тепла. Металлы VIВ–VIIIВ подгрупп образуют с водородом только твердые растворы с небольшим экзотермическим эффектом растворения. Исключение составляет Pd, для которого известно соединение PdH0,59–0,60 (Pd4H3). Металлоподобные гидриды используются как восстановители, катализаторы, накопители водорода и для получения мелкодисперсных порошков металлов. Оксиды d-элементов – твердые кристаллические вещества (исключение составляют некоторые оксиды высших степеней окисления: OsO4 – летучие кристалы, tкип = 130 °C, Mn2O7 – жидкость). Среди твердых оксидов много соединений переменного состава. Например, для Mn это MnO1,0–1,5, для Fe – FeO1,04–1,12. Известны гомологические ряды кислородных соединений d-элементов TinO2n–1, VnO2n–1, WnO2n–1, где n меняется от 4 до 10. Способность d-элементов образовывать соединения переменного состава приводит к тому, что в пределах одной системы металл–кислород свойства оксидов варьируются в широких пределах. Например, в системе Ti–O фазы TiO0,88–TiO1,12 обладают металлическими электропроводностью и блеском: при повышении температуры их электропроводность понижается. Фазы TiO1,5–Ti3O5 и оксиды гомологического ряда TinO2n–1 являются полупроводниками, а TiO2 – типичный диэлектрик. Это свидетельствует об изменении природы химической связи: в ряду Ti2O3 – Ti3O5 – Ti5O9 – Ti10O19 – TiO2 связь меняется от металлической до почти ковалентной. Окислительно-восстановительные свойства соединений d-элементов подобны таковым для соединений главных подгрупп: высшие оксиды – окислители, низшие – восстановители, промежуточные проявляют окислительно-восстановительную двойственность. В соответствии с кислотно-основными свойствами гидроксидов d-элементов, которые были рассмотрены ранее, низшие оксиды обычно проявляют основные свойства, высшие – кислотные свойства, а промежуточные нередко бывают амфотерными. Например, MnO является основным оксидом (Mn(OH)2, MnCl2 и т. д.), Cr2O3 и MnO2 – амфотерны (CrCl3 и KCrO2 – хромит, MnCl4 и CaMnO3 – манганит), а для CrO3 и Mn2O7 характерны исключительно кислотные свойства (K2CrO4 – хромат, KMnO4 – перманганат). Кислородные соединения d-элементов представляют большой практический интерес, так как получение свободных металлов часто осуществляется через их оксиды. Многие оксиды – тугоплавкие вещества. Из оксида циркония (Tпл = 2550 ºC) изготовляют жаропрочные изделия: тигли, трубки, футеровку высокотемпературных печей. Среди высших оксидов встречаются диэлектрики, полупроводники и твердые электролиты. Некоторые сложные комбинации оксидов d-элементов применяются как ферромагнетики, выгодно отличающиеся от ферромагнитных сплавов металлов гораздо меньшей электропроводностью. Бориды, нитриды, карбиды и силициды получаются при термическом взаимодействии металлов с бором, углеродом, азотом и кремнием. Это металлоподобные соединениея внедрения. Они имеют переменный состав. Их формулы принято писать в виде: TaC1,0–0,40; ZrC1,00–0,56; NbC0,94–0,79; TiC1,00–0,60; TiN1,00–0,45; VC1,00–0,59. Все эти соединения находят широкое применение в технике благодаря своей высокой тугоплавкости (конструкционные материалы в ракетной технике, абразивы – сплавы типа «победит»). Некоторые соединения – катализаторы и сверхпроводники (NbC, TaN, MoC, NbN, WC). Их химическая инертность используется для изготовления химической аппаратуры. Обработка поверхности металла метаном, бороводородами, аммиаком, позволяющая создать карбидный, боридный или нитридный слой, повышает коррозионную стойкость и механическую прочность изделия. F-Элементы f-Элементы делятся на лантаноиды и актиноиды. Лантаноиды. Семейство из 14 элементов (4f-элементы), следующих за La, общий символ Ln. Электронные конфигурации Ln отражают внутреннюю периодичность, проявляющуюся в некоторых свойствах Ln3+, у которых 4f-орбитали заполняются сначала по одному (подсемейство церия: Ce – Gd), а потом по второму электрону (подсемейство тербия: Tb – Lu). Уменьшение атомных и ионных радиусов приводит к лантаноидному сжатию, вследствие которого элементы, следующие за Lu, по своим свойствам оказываются очень похожими на своих предшественников по группам (Zr и Hf, Nb и Ta, Mo и W, Tc и Re). Cеребристо-белые металлы, тускнеющие во влажном воздухе, при нагревании разлагают воду, взаимодействуют со всеми кислотами (кроме H3PO4 и HF), образуя преимущественно ионы Ln3+, другие степени окисления свойственны Ce, Pr, Tb, Dy (4+), Sm, Eu, Tm, Yb (2+). С H, B, C, N, O, халькогенами, галогенами образуют вполне устойчивые соединения. По химическим свойствам достаточно схожи, разделяют ионообменной хроматографией и экстракцией. Разделенные Ln3+ используют для получения химических соединений с нужными люминесцентными, спектроскопическими и магнитными свойствами, изготовления неодимовых стекол (лазеры), люминесцентных преобразователей (приборы ночного видения), изготовления постоянных магнитов (SmCo5). Основная доля используется в виде смесей металлов или оксидов и других соединений с природным содержанием Ln для изготовления катализаторов, легирующих добавок в металлургии, полировочных паст, аккумуляторов газообразного водорода (LnNi5) и др. Актиноиды. Семейство из 14 элементов, следующих за Ac, (5f-семейство), общий символ An. Первые три – Th, Pa, U – встречаются в природе, их наиболее долгоживущие изотопы – 232Th (T1/2 = 1,4·1010 лет), 231Pa (T1/2 = 3,43·104 лет), 238U (T1/2 = 4,5·109 лет). Остальные An были получены ядерным синтезом в лабораториях США и России, все радиоактивны. Делятся на два подсемейства Th – Cm (цискюриды) и Bk – Lr (транскюриды). Первое подсемейство во многом отличается от соответствующих лантаноидов, проявляя помимо An3+ и более высокие степени окисления An4+ (Th, Pa, Am, Cm), An4+, 5+, 6+ (U, Np, Pu) и даже Pu7+. Второе подсемейство по химическим свойствам ближе к соответствующим лантаноидам, хотя для менделевия известны соединения Md1+, а для лоуренсия – Lr4+. В свободном состоянии лантаноиды – весьма активные металлы. В ряду напряжений они находятся значительно левее водорода (электродные потенциалы лантаноидов составляют около –2,4 В). Поэтому все лантаноиды взаимодействуют с водой с выделением водорода:
Соединения лантаноидов со степенью окисления IV проявляют окислительные свойства (Ce, Tb): а соединения со степенью окисления II (Eu, Sm, Yb) – восстановительные, причем окисляются даже водой:
Лантаноиды очень реакционноспособны и легко взаимодействуют со многими элементами периодической системы: в кислороде сгорают при 200–400 °С с образованием Э2O3, а в атмосфере азота при 750–1000 °С образуют нитриды. Церий в порошкообразном состоянии легко воспламеняется на воздухе, поэтому его используют при изготовлении кремней для зажигалок. Лантаноиды взаимодействуют с галогенами, серой, углеродом, кремнием и фосфором. Химическая активность элементов в ряду Ce–Lu несколько уменьшается из-за уменьшения их радиусов. С водородом лантаноиды образуют солеобразные гидриды ЭH2 и ЭH3, которые по свойствам более близки к гидридам щелочно-земельных металлов, чем к гидридам d-элементов. С кислородом все лантаноиды образуют оксиды типа Э2O3, являющиеся химически и термически устойчивыми; так, La2O3 плавится при температуре 2000 °С, а CeO2 – около 2500 °С. Самарий, европий и иттербий, кроме оксидов Э2O3, образуют также монооксиды EuO, SmO, YbO. Церий легко образует оксид CeO2. Оксиды лантаноидов в воде нерастворимы, но энергично ее присоединяют с образованием гидроксидов:
Гидроксиды лантаноидов по силе уступают лишь гидроксидам щелочно-земельных металлов. Лантаноидное сжатие приводит к уменьшению ионности связи Э–ОН и уменьшению основности в ряду Ce(OH)3 – Lu(OH)3. Лантаноиды используют в металлургии для легирования сталей, что повышает прочность, жаростойкость и коррозийную устойчивость последних. Такие стали применяют для изготовления деталей сверхзвуковых самолетов и оболочек искусственных спутников Земли. Добавление оксида лантана в стекла повышает их показатель преломления (так называемая лантаноидная оптика). Радиационно-оптическую устойчивость стекол повышает CeO2. Стекла с неодимом используются в оптических квантовых генераторах. Оксиды гадолиния, самария и европия входят в состав защитных керамических покрытий от тепловых нейтронов в ядерных реакторах. Соединения лантаноидов используются в качестве катализаторов. Способность их соединяться с атмосферными газами используется для создания высокого вакуума. Отличия актиноидов и лантаноидов обусловлены тем, что у актиноидов энергетические уровни 5f и 6d стабилизируются по мере возрастания атомного ядра несколько иным способом, чем у лантаноидов: у легких актиноидов более устойчивы 6d-орбитали, а у тяжелых – 5f (рис. 8.16). Для элементов с атомными номерами 90–95 энергия 5f- и 6d-подуровней примерно одинакова. Последнее затрудняет однозначное определение электронной конфигурации элемента. Так для Np одинаково вероятны и 5f46d17s2, и 5f56d07s2 электронные состояния. Этим объясняются различия в химии актиноидов и лантаноидов. У элементов с атомными номерами 91–95 (Th–Am) электронные переходы происходят легко. Эти элементы поливалентны и в этом подобны d-элементам. Более того, для них степень окисления III вообще мало характерна. Получен семивалентный нептуний, уран легко может быть переведен в шестивалентное состояние, протактиний проявляет степень окисления пять, а для тория трудно получить соединения, в которых он имел бы степень окисления ниже четырех. Однако по мере заполнения 5f-уровней электронные конфигурации атомов стабилизируются, переход 5f-электронов в 6d-состояние становится все более затрудненным. Поэтому элементы Bk–Lr, ведут себя как типичные f-элементы, а по свойствам близки к лантаноидам. Для них основной степенью окисления является III. Поскольку наиболее долгоживущими элементами являются первые 5f-элементы (Th–Am), их химические свойства изучены лучше, а многообразие проявляемых степеней окисления в значительной мере отличает их от типичных 4f-элементов и тяжелых 5f-элементов. С водородом актиноиды образуют гидриды переменного состава (ThH2, Th4H15; PaH2–2,7; AmH2–2,7), но для урана можно получить и стехиометрический гидрид UH3. В общем случае гидриды этих элементов термически менее устойчивы, чем гидриды 4f-элементов. С кислородом актиноиды образуют оксиды, соответствующие их наиболее устойчивым степеням окисления (ThO2, PaO2, Pa2O5, NpO2 и др.). К исключительно сложным следует отнести систему уран–кислород. Характерными для урана являются оксиды UO2 – UO2,25; U3O8 и UO3, из них наиболее устойчив U3O8 (UO2∙2UO3) – урановая смолка. Отличительной особенностью кислородсодержащих соединений актиноидов в высших степенях окисления V, VI является наличие катионных группировок и или PaO2(OH), UO2(OH)2. Эти группировки называются иловыми оксоионами. Например, – уранил, – протактинил. Оксоионы устойчивы и сохраняются без изменения в разнообразных химических реакциях:
Особая устойчивость оксоионов объясняется тем, что связь между атомами актиноида и кислорода формально можно рассматривать как тройную:
Для ионов прочность связи увеличивается в ряду Am < Pu < Np. С галогенами актиноиды образуют многообразные галогениды ЭГn, где n = 3, 4, 5, 6. Фториды элементов в высших степенях окисления летучи, что позволило разделить изотопы урана 235U и 238U. Взаимодействие актиноидов с B, Si, C, N, P, S и Se приводит к образованию соединений нестехиометрического состава вследствие возможного присутствия элемента в разных степенях окисления. Уменьшение радиусов элементов в ряду Th–Lr приводит к ослаблению основных свойств соединений. Соединения актиноидов склонны к диспропорционированию. Например: Свойства тяжелых 5f-элементов (Bk, Cf, Es, Md, No, Fm, Lr) изучены мало, поскольку они получены в виде короткоживущих радиоактивных изотопов в очень малых количествах. Однако есть основания полагать, что они подобны лантаноидам. Актиноиды и их соединения используются в атомной энергетике. Торий используется как легирующая добавка в жаропрочных сталях, катализаторах при синтезе многих соединений, вакуумной электронике. Соли урана применяются как красители для стекла и глазурей, аналитические и фотографические препараты.
|
|||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-09-05; просмотров: 251; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.81.47 (0.008 с.) |