Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Температура и скорость реакцииСодержание книги
Поиск на нашем сайте
При фиксированной температуре реакция возможна, если взаимодействующие молекулы обладают определнным запасом энергии. Аррениус эту избыточную энергию назвал энергией активации, а сами молекулы активированными. По Аррениусу константа скорости k и энергия активации Ea связаны соотношением, получившим название уравнения Аррениуса:
Здесь А – предэкспоненциальный множитель, R – универсальная газовая постоянная, Т – абсолютная температура. Таким образом, при постоянной температуре скорость реакции определяет Ea. Чем больше Ea, тем меньше число активных молекул и тем медленнее протекает реакция. При уменьшении Ea скорость возрастает, а при Ea = 0 реакция протекает мгновенно. Величина Ea характеризует природу реагирующих веществ и определяется экспериментально из зависимости k = f(T). Записав уравнение (5.3) в логарифмическом виде и решая его для констант при двух температурах, находим Ea:
Если Ea = 50–100 кДж∙моль–1, то из уравнения Аррениуса следует, что при изменении температуры реакции на 10 градусов ее скорость изменится в 2–4 раза. Это правило было эмпирически установленно Вант-Гоффом:
γ – температурный коэффициент скорости химической реакции. Правило Вант-Гоффа имеет ограниченное применение, поскольку величина γ зависит от температуры, а вне области Ea = 50–100 кДж ∙ моль–1 это правило вообще не выполняется. На рис. 5.4 видно, что затрачиваемая на перевод начальных продуктов в активное состояние (А* – активированный комплекс) энергия затем полностью или частично вновь выделяется при переходе к конечным продуктам. Разность энергий начальных и конечных продуктов определяет ΔH реакции, которая от энергии активации не зависит. Таким образом, по пути из исходного состояния в конечное система должна преодолеть энергетический барьер. Только активные молекулы, обладающие в момент столкновения необходимым избытком энергии, равным Ea, могут преодолеть этот барьер и вступить в химическое взаимодействие. С ростом температуры увеличивается доля активных молекул в реакционнной среде. Предэкспоненциальный множитель A характеризует общее число соударений. Для реакций с простыми молекулами A близок к теоретической величине столкновений Z, т. е. A = Z, рассчитываемой из кинетической теории газов. Для сложных молекул A ≠ Z, поэтому необходимо вводить стерический фактор P: Стерический фактор учитывает то обстоятельство, что для взаимодействия сложных активных молекул необходима определенная взаимная ориентация: течению процессов способствует столкновение молекул в положениях, когда в соприкосновение приходят их реакционноспособные связи или неподеленные пары электронов. Таким образом, уравнение Аррениуса имеет вид
Здесь Z – число всех соударений, P – доля соударений, благоприятных в пространственном отношении (принимает значения от 0 до 10–9), – доля активных, т. е. благоприятных в энергетическом отношении соударений. Размерность константы скорости получается из соотношения и, как видно из уравнения Аррениуса, размерность предэкспоненты та же. Для Т = 300 K и концентраций, выраженных в моль∙л–1, Z имеет следующие приблизительные значения в реакциях различной молекулярности:
Анализируя выражение (5.3), приходим к выводу, что существуют две принципиальные возможности ускорения реакции: Катализ Изменить величину Ea можно с помощью катализаторов. Вещества, принимающие участие, но не расходующиеся в процессе реакции, назваются катализаторами. Само это явление называется катализом. В зависимости от того, находится ли катализатор в той же фазе, что и реагирующие вещества, или образует самостоятельную фазу, говорят о гомогенном или гетерогенном катализе. Механизм каталитического действия для них не одинков, однако и в том и в другом случае происходит ускорение реакции за счет снижения Ea. Так, медленно протекающая реакция A + B → А…B → AB (ΔG < 0) в присутствии катализатора идет с большей скоростью в две стадии: т. е. образуются частицы промежуточного соединения AK (катализатора с реагентами), затем активный комплекс AKB и конечные продукты с регенерацией катализатора. Следовательно, каталитический путь оказывается кинетически более выгодным, чем прямое взаимодействие исходных веществ. Существует ряд специфических катализаторов – ингибиторов, снижающих скорость реакции. Увеличение скорости реакции в присутствии катализатора определяется формулой
где – параметры каталитического процесса, V, k, Ea – некаталитического процесса ln /k = 2,303 lg /k = Ea – /RT.
Обратимые реакции Особенность обратимых реакций состоит в том, что по мере накопления продуктов реакции возрастает скорость обратной реакции. Если они сравняются, то наступает равновесное состояние. Для реакции ЗДМ для прямой реакции Vпр = kпр [A]a [B]b, для обратной реакции Vобр = kобр [L]l [Q]q. При условии Vобр = Vпр получаем При отношении получаем выражение ЗДМ для обратимой реакции
Для одностадийной реакции – где k1 – константа скорости прямой реакции, k–1 – константа скорости обратной реакции. При наступлении равновесия k1 [A] = k–1 [B], следовательно Предположим, что А может превратиться в B через промежуточную стадию образования C: Возможен ли такой циклический процесс? Оказывается, такой циклический процесс запрещен в силу принципа детального равновесия (микроскопической обратимости), согласно которому для равновесного химического процесса всякая элементарная реакция должна идти со скоростью, в точности равной скорости реакции. То есть, в обратимой элементарной реакции прямая и обратная реакции протекают через одно и то же переходное состояние..
Лекция 6. Растворы Классификация растворов Растворы – это гомогенные (однофазные) системы переменного состава, состоящие из двух или более веществ (компонентов). По характеру агрегатного состояния растворы могут быть газообразными, жидкими и твердыми. Обычно компонент, который в данных условиях находится в том же агрегатном состоянии, что и образующийся раствор, считают растворителем, остальные составляющие раствора – растворенными веществами. В случае одинакового агрегатного состояния компонентов растворителем считают тот компонент, который преобладает в растворе. В зависимости от размеров частиц растворы делятся на истинные и коллоидные. В истинных растворах (часто называемых просто растворами) растворенное вещество диспергировано до атомного или молекулярного уровня, частицы растворенного вещества не видимы ни визуально, ни под микроскопом, свободно передвигаются в среде растворителя. Истинные растворы – термодинамически устойчивые системы, неограниченно стабильные во времени. Движущими силами образования растворов являются энтропийный и энтальпийный факторы. При растворении газов в жидкости энтропия всегда уменьшается ΔS < 0, а при растворении кристаллов возрастает (ΔS > 0). Чем сильнее взаимодействие растворенного вещества и растворителя, тем больше роль энтальпийного фактора в образовании растворов. Знак изменения энтальпии растворения определяется знаком суммы всех тепловых эффектов процессов, сопровождающих растворение, из которых основной вклад вносят разрушение кристаллической решетки на свободные ионы (ΔH > 0) и взаимодействие образовавшихся ионов с молекулами растворителя (сольтивация, ΔH < 0). При этом независимо от знака энтальпии при растворении (абсолютно нерастворимых веществ нет) всегда ΔG = ΔH – T∙ΔS < 0, т. к. переход вещества в раствор сопровождается значительным возрастанием энтропии вследствие стремления системы к разупорядочиванию. Для жидких растворов (расплавов) процесс растворения идет самопроизвольно (ΔG < 0) до установления динамического равновесия между раствором и твердой фазой. Концентрация насыщенного раствора определяется растворимостью вещества при данной температуре. Растворы с меньшей концентрацией называются ненасыщенными. Растворимость для различных веществ колеблется в значительных пределах и зависит от их природы, взаимодействия частиц растворенного вещества между собой и с молекулами растворителя, а также от внешних условий (давления, температуры и т. д.) В химической практике наиболее важны растворы, приготовленные на основе жидкого растворителя. Именно жидкие смеси в химии называют просто растворами. Наиболее широко применяемым неорганическим растворителем является вода. Растворы с другими растворителями называются неводными. Растворы имеют чрезвычайно большое практическое значение, в них протекают многие химические реакции, в том числе и лежащие в основе обмена веществ в живых организмах. Концентрация растворов Важной характеристикой растворов служит их концентрация, которая выражает относительное количество компонентов в растворе. Различают массовые и объемные концентрации, размерные и безразмерные. К безразмерным концентрациям (долям) относятся следующие концентрации: · Массовая доля растворенного вещества W(B) выражается в долях единицы или в процентах: · где m(B) и m(A) – масса растворенного вещества B и масса растворителя A. · Объемная доля растворенного вещества σ(B) выражается в долях единицы или объемных процентах: · где Vi – объем компонента раствора, V(B) – объем растворенного вещества B. Объемные проценты называют градусами*). · *) Иногда объемная концентрация выражается в тысячных долях (промилле, ‰) или в миллионных долях (млн–1), ppm. · Мольная доля растворенного вещества χ(B) выражается соотношением · Сумма мольных долей k компонентов раствора χi равна единице К размерным концентрациям относятся следующие концентрации: · Моляльность растворенного вещества Cm(B) определяется количеством вещества n(B) в 1 кг (1000 г) растворителя, размерность моль/кг. · Молярная концентрация вещества B в растворе C(B) – содержание количества растворенного вещества B в единице объема раствора, моль/м3, или чаще моль/литр: · где μ(B) – молярная масса B, V – объем раствора. · Молярная концентрация эквивалентов вещества B Cэ(B) (нормальность – устаревш.) определяется числом эквивалентов растворенного вещества в единице объема раствора, моль∙литр–1: · где nЭ(B) – количество вещества эквивалентов, μЭ – молярная масса эквивалента. · Титр раствора вещества B(TB) определяется массой растворенного вещества в г, содержащегося в 1 мл раствора:
·
Массовые концентрации (массовая доля, процентная, моляльная) не зависят от температуры; объемные концентрации относятся к определенной температуре. Все вещества в той или иной степени способны растворяться и характеризуются растворимостью. Некоторые вещества неограниченно растворимы друг в друге (вода-ацетон, бензол-толуол, жидкие натрий-калий). Большинство соединений ограниченно растворимы (вода-бензол, вода-бутиловый спирт, вода-поваренная соль), а многие малорастворимы или практически нерастворимы (вода-BaSO4, вода-бензин). Растворимостью вещества при данных условиях называют его концентрацию в насыщенном растворе. В таком растворе достигается равновесие между растворяемым веществом и раствором. В отсутствие равновесия раствор остается стабильным, если концентрация растворенного вещества меньше его растворимости (ненасыщенный раствор), или нестабильным, если в растворе содержится вещества больше его растворимости (пересыщенный раствор).
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-09-05; просмотров: 257; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.248.48 (0.009 с.) |