Чугунная арка, пролетом 30м применена в перекрытии 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Чугунная арка, пролетом 30м применена в перекрытии



В В Е Д Е Н И Е

 

Понятие «Металлические» конструкции» включают в себя их конструктивную форму, технологию изготовления и способы монтажа. Уровень развития металлических конструкций определяется, с одной стороны, потребностями в них народного хозяйства, с другой - возможностями технической базы развития металлургии, металлообработки, строительной науки и техники.

Металл применяли давно с ХII века в уникальных по тому времени сооружениях (дворцах, церквах, и т. д.) в виде затяжек и скреп для каменной кладки. Затяжки выковывали из кричного железа и скрепляли через проушины на штырях. Первой такой конструкцией являются затяжки Успенского собора во Владимире (1158 г.). Покровский собор в Москве – первая конструкция, состоящая из стержней, работающих на растяжение, изгиб и сжатие. Там затяжки, поддерживающие пол и потолок, укреплены для облегчения работы на изгиб подкосами. Конструктор уже в то время знал, что для затяжки, работающей на изгиб, надо применить полосу, поставленную на ребро, а подкосы, работающие на сжатие, лучше делать квадратного сечения (рис.1).

 

 
 

 

Рис.1. Перекрытие коридора в Покровском соборе (Москва, 1560 г.)

С начала XVII века металл применяют в пространственных купольных конструкциях глав церквей. Стержни конструкций выполнены из кованых брусков и соединены на замок и скрепы горной сваркой. Такие конструкции можно видеть в наши дни: трапезная Троице-Сергиевой лавры в Сергиевом Посаде 1696-1698 гг., здание Большого Кремлевского Дворца в Москве (1640 г.), каркас купола колокольни Ивана Великого (1603 г.), каркас купола Казанского Собора в Петербурге, пролетом 15 м (1805 г.) и др.

С начала XVIII стали осваивать процесс литья чугунных стержней и деталей. Строятся чугунные мосты. Соединения чугунных элементов осуществляются на замках и болтах.

 
 

Первой чугунной конструкцией в России считается покрытие крыльца Невьянской башни на Урале (1725 г.). В 1784 г. в Петербурге построен первый чугунный мост. Уникальной чугунной конструкцией 40-х г. ХIХ века является купол Исаакиевского собора, собранного из отдельных косяков в виде сплошной оболочки (рис.2).

 

Рис.2. Купол Исаакиевского собора

 

Чугунная арка, пролетом 30м применена в перекрытии

Александринского театра в Петербурге (1827-1832 гг.).

В 50-е годы ХIХ века в Петербурге был построен Николаевский мост с восемью арочными пролетами от 33 до 47 м, это самый крупный чугунный мост мира.

С 30-х г. ХIХ века до 20-х г. ХХ века – идет быстрый технический прогресс в металлургии и металлообработке, появляются заклепочные соединения, в 40-х г. ХIХ века освоен процесс получения профильного металла и прокатного листа. Сталь почти полностью вытеснила из строительных конструкций чугун. Все стальные конструкции в течение ста последующих лет выполнялись клепанными.

Чугунные конструкции во второй половине ХIХ века применялись лишь в колоннах многоэтажных зданий, перекрытиях вокзальных дебаркадеров и т. п., то есть, где сопротивляемость чугуна сжатию лучше стали.

До конца ХIХ века в России промышленные и гражданские здания строились в основном с кирпичными стенами и небольшими пролетами, для перекрытия использовались треугольные металлические фермы (рис.3). Сначала в фермах не было раскосов, они появились в конце рассматриваемого периода.

 
 

Рис.3. Стропильная ферма (70-е годы ХIХ в.)

 

Во второй половине ХIХ века значительное развитие получило металлическое мостостроение, где стали применять решетчатые фермы с треугольной шпренгельной решеткой, появляется металлический сортамент прокатных профилей.

В начале ХХ века промышленные здания стали строить с металлическим каркасом, который поддерживал как ограждающие конструкции, так и пути мостовых кранов. Несущим элементом каркаса стала поперечная рама, состоящая из колонн и ригелей (стропильные фермы). Все стальные конструкции изготавливались в основном клепанными. Сталь стала вытеснять чугун. К концу века совершенствуется форма ферм, появляются раскосы, узловые соединения вместо болтовых на проушинах, стали выполнять заклепочными с помощью фасонок.

В конце ХIХ столетия стали применять решетчатые рамно-арочные конструкции для перекрытий зданий значительных пролетов, например, Киевский вокзал в Москве по проекту В.Г.Шухова 1913 – 1914 гг. (рис..4). Развивается металлическое мостостроение (например, мост с решетчатыми фермами через реку Лугу, 1853 г.). Профессор Л.Д.Проскурянов ввел в мостовые фермы треугольную и шпренгельную решетки (мост через реку Енисей).

 
 

Дальнейшее развитие металлургии, машиностроения и других отраслей промышленности потребовало оборудования зданий мостовыми кранами. Сначала их устанавливали на эстакадах, но с увеличением грузоподъемности стало целесообразно строить здания с металлическим каркасом,

 

Рис.4. Перекрытие Киевского вокзала в Москве

 

 

поддерживающим пути мостовых кранов. Основным несущим элементом каркаса стала поперечная рама (рис.5).

 

 
 

Рис.5. Каркас промышленного здания (начало ХХ в.)

 

 

Профессор Ф.С.Ясинский первый запроектировал многопролетное промышленное здание. Академик В.Г.Шухов первый в мире разработал и построил пространственные и решетчатые конструкции покрытий и башен различного назначения (телебашня, рис.6).

В построенных им сооружениях реализованы идеи предварительного напряжения конструкций и возведения покрытий в виде висячих систем. Тем самым он предугадал будущие направления в развитии металлических конструкций. Значительна его работа также в области резервуаростроения, он разработал новые формы резервуаров, их расчет и методы нахождения оптимальных параметров (рис.7).

К концу 40-х годов ХХ века клепаные конструкции почти полностью заменили сварными, более экономичными. Появляются низколегированные и высокопрочные стали. Кроме стали, начали использовать алюминиевые сплавы, плотность которых почти втрое меньше.

Расширилась номенклатура металлических конструкций. Большие и многообразные задачи по развитию металлических конструкций решались

усилиями проектных, научных и производственных коллективов – Проектстальконструкций, Промстройпроекта и ЦНИПС, переименованного в дальнейшем в ЦНИИСК, а также вузовскими коллективами.

Проектировщики взяли за основу схему конструирования поперечной рамы с жестким сопряжением колонны с фундаментами и ригелем. С развитием металлических конструкций, большим объемом и связанная с ним

 

 

 
 

Рис.6. Башня В. Г. Шухова в Москве

 

повторяемость конструкций создали предпосылки для разработки типовых систем и конструктивных решений промышленных зданий. В связи с этим

впервые введен трехметровый модуль пролетов, который в 50-е годы был заменен шестиметровым. Типизация распространялась также на пролетные

строения мостов, резервуары, газгольдеры, радиобашни, радиомачты. Типизация, унификация и стандартизация – одно из главных направлений

 

 

 
 

Рис.7. Листовые конструкции:

а) капле видный резервуар;

б) газгольдер мокрый

развития металлических конструкций. Это снижало трудоемкость изготовления и монтажа конструкций, уменьшало расход стали. Из общественных сооружений можно выделить павильон Космоса на ВВЦ (Москва), перекрытие Дворца спорта в Лужниках, уникальные большепролетные сооружения с металлическими несущими конструкциями, построенными в Москве к Олимпиаде-80.

Наряду с совершенствованием конструкций развивались формы и методы расчета. До 1950 г. расчет велся по методу допустимых напряжений. Такой расчет недостаточно полно отражал действительную работу конструкции под нагрузкой, приводил к перерасходу металла, поэтому был разработан метод предельного состояния. Появляются ЭВМ, что позволяет проектировщику найти быстро конструктивные оптимальные решения.

Успехами в развитии металлических конструкций мы обязаны профессору Н.С.Стрелецкому, который 50 лет возглавлял школу металлостроения. Он явился одним из инициаторов перехода от расчета по допускаемым напряжениям к расчету по предельным состояниям. В области электросварки большой вклад внес профессор Е.О.Патон.

Параллельно с развитием металлостроения в России, расширяется его использование и в западных странах. Первый чугунный мост был построен в Англии через реку Северн в 1776-1779 гг., пролетом 30,6 м. Мост через Менейский пролив в Англии построен в 1818-1826 гг., пролетом 176,5 м. В 1832-1840 гг. построен мост во Фрейбурге в Швейцарии, пролетом 273 м, а в 1889 г. строится Эйфелева башня в Париже, высотой 300 м и многие другие сооружения.

 

 

Конструкций

 

Металлические конструкции применяются во всех инженерных сооружениях значительных пролетов, высоты и нагрузок. В зависимости от конструктивной формы и назначения металлические конструкции можно разделить на восемь видов:

1. Промышленные здания – цельнометаллические или со смешанным каркасом (колонны железобетонные). Цельнометаллические в зданиях с большим пролетом, высотой и грузоподъемностью.

2. Большепролетные покрытия зданий – спортивные сооружения, рынки, выставочные павильоны, театры, ангары и др. (пролеты до 100-150 м).

3. Мосты, эстакады – мосты на железнодорожных и автомобильных магистралях.

4. Листовые конструкции – резервуары, газгольдеры, бункеры, трубопроводы большого диаметра и др.

5. Башни и мачты – радио и телевидения в геодезической службе, опоры линии электропередачи, нефтяные вышки и др.

6. Каркасы многоэтажных зданий. Применяются в многоэтажных зданиях, в условиях плотной застройки больших городов.

7. Крановые и другие подвижные конструкции – мостовые, башенные, козловые краны, конструкции экскаваторов и др.

8. Прочие конструкции по использованию атомной энергии в мирных целях, разнообразные конструкции радиотелескопов для космической и радиосвязи, платформы для разведки и добычи нефти и газа в море и др.

Металлические конструкции обладают следующими достоинствами:

1. Надежность. Материал (сталь, алюминиевые сплавы) обладает большой однородностью структуры.

2. Легкость. Металлические конструкции самые легкие.

3. Индустриальность. Изготовление и монтаж металлических конструкций производится специализированными организациями с использованием высокопроизводительной техники.

4. Непроницаемость. Обладают высокой прочностью и плотностью, непроницаемостью для газов и жидкостей.

Металлические конструкции имеют недостатки:

1. Коррозия. Незащищенность от влажной среды, атмосферы, загрязненной агрессивными газами, сталь коррозирует (окисляется) и разрушается. Поэтому в сталь включают специальные легирующие элементы, покрывают защитными пленками (лаки, краски и т.д.).

2. Небольшая огнестойкость. У стали при температуре 200˚С уменьшается модуль упругости, а при температуре 600˚С сталь полностью переходит в пластическое состояние. Алюминиевые сплавы переходят в пластическое состояние при 300˚С. Поэтому металлические конструкции защищают огнестойкими облицовками (бетон, керамика, специальные покрытия

и т.д.).

При проектировании металлических конструкций должны учитываться следующие требования:

Условия эксплуатации.

2. Экономия металла (высокая стоимость).

3. Транспортабельность (перевозка по частям или целиком с применением соответствующих транспортных средств).

4. Технологичность – использование современных технологических приемов, обеспечивающих снижение трудоемкости.

5. Скоростной монтаж. Сборка в наименьшие сроки.

6. Долговечность – определяется сроками физического и морального износа.

7. Эстетичность. Конструкция должна обладать гармоничными формами.

Основным принципом проектирования является достижение трех главных показателей: экономии стали, повышение производительности труда при изготовлении, снижение трудоемкости и сроков монтажа, которые определяют стоимость конструкции.

Достигается это путем использования низколегированных и высокопрочных сталей, экономичных прокатных и гнутых профилей, внедрения в строительство пространственных, предварительно напряженных, висячих, трубчатых и т. п. конструкций, совершенствованием методов расчета и изысканием конструктивных оптимальных решений с использованием ЭВМ. Кроме того, разработаны типовые решения часто повторяющихся конструктивных элементов - колонн, ферм, подкрановых балок, оконных и фонарных проемов, радиомачт, башен, опор линии электропередачи, резервуаров т.п.

 

 

Алюминиевых сплавов

Для строительных металлических конструкций используются, в основном, стали и алюминиевые сплавы.

Наиболее важными для работы являются механические свойства: прочность, упругость, пластичность, склонность к упругому разрушению, ползучесть, твердость, а также свариваемость, коррозионная стойкость, склонность к старению и технологичность.

Прочность - характеризует сопротивляемость материала внешним силовым воздействиям без разрушения.

Упругость – свойство материала восстанавливать свою первоначальную форму после снятия внешних нагрузок.

Пластичность – свойство материала сохранять деформативное состояние после снятия нагрузки, т.е. получать остаточные деформации без разрушения.

Хрупкость – склонность разрушаться при малых деформациях.

Ползучесть – свойство материала непрерывно деформироваться во времени без увеличения нагрузки.

Твердость – свойство поверхностного слоя металла сопротивляться упругой и пластической деформациям или разрушению при внедрении в него индентора из более твердого материала.

Прочность металла при статическом нагружении, а также его упругие и пластические свойства определяются испытанием стандартных образцов на растяжение с записью диаграммы зависимости между напряжением Ơи относительным удлинением ε.

Диаграммы растяжения различных металлов показаны на рис.1.1, б.

 

 

Классификация сталей

 

По прочностным свойствам стали условно делятся на три группы: обычной (Ơ у = 29 кН/см), повышенной (Ơ у = 29-40 кН/см) и высокой прочности (Ơ у > >40 кН/см).

Повышение прочности стали, достигается легированием и термической обработкой.

По химическому составу стали, подразделяются на углеродистые и легированные.

Углеродистые стали состоят из железа и углерода с добавкой кремния (или алюминия) и марганца.

 
 

 

Рис.1.1. К определению механических характеристик металла:

а – образец для испытания на растяжение; б – к определению

предела пропорциональности и предела упругости

 

Углерод (У) повышая прочность стали, снижает ее пластичность и ухудшает свариваемость, поэтому применяются только низкоуглеродистые стали (У < 0,22%).

Легированные стали помимо железа и углерода имеют специальные добавки, улучшающие качество стали. Однако, добавки ухудшают свариваемость стали и удорожают ее, поэтому в строительстве используют низколегированные стали с содержанием добавки не более 5%.

Основными легирующими добавками являются кремний (С), марганец (Г), медь (Д), хром (Х), никель (Н), ванадий (Ф), молибден (М), алюминий (Ю), азот (А).

Кремний раскисляет сталь, т.е. связывает избыточный кислород и повышает ее прочность, снижает пластичность, ухудшает свариваемость и коррозионную стойкость.

Марганец повышает прочность, снижает вредное влияние серы. При содержании марганца > 1,5% сталь становится хрупкой.

Медь повышает прочность, увеличивает стойкость против коррозии. Содержание меди > 0,7% способствует старению и хрупкости стали.

Хром и никель повышают прочность стали, без снижения пластичности

и улучшают ее коррозионную стойкость.

Алюминий раскисляет сталь, нейтрализует вредное влияние фосфора, повышает ударную вязкость.

Ванадий и молибден увеличивают прочность почти без снижения пластичности, предотвращают разупрочнение термообработанной стали при сварке.

Азот в несвязном состоянии способствует старению стали, делает ее хрупкой, поэтому его должно быть не более 0,009%.

Фосфор относится к вредным примесям так как, повышает хрупкость стали. В зависимости от вида поставки стали подразделяются на горячекатаные и

термообработанные (закалка в воде и высокотемпературный отпуск).

По степени раскисления стали могут быть кипящими, полуспокойными и спокойными.

Спокойные стали используют при изготовлении ответственных конструкций, подвергающихся динамическим воздействиям. Полуспокойная сталь – промежуточная между кипящей и спокойной.

 

 

В – без перерыва

 

Если образец загрузить до пластического состояния и затем снять нагрузку, то появятся остаточные деформации εост. При повторном нагружении образца после некоторого «отдыха» материал работает упруго до уровня предыдущего загружения. Повышение упругой работы материала в результате предшествующей пластической деформации называется наклепом. При наклепе искажается атомная решетка и увеличивается плотность дислокаций. Пластичность стали снижается, повышается опасность хрупкого разрушения, что неблагоприятно сказывается на работе строительных конструкций.

Наклеп возникает в процессе изготовления конструкций при холодной гибки элементов, пробивке отверстий, резке ножницами.

Влияние температуры. Механические свойства стали при нагревании ее до температуры t = 200-250˚С практически не меняются.

При температуре 250-300˚С прочность стали повышается, но снижается пластичность. Сталь становится более хрупкой.

Нагрев свыше 400˚С приводит к резкому падению предела текучести и временного сопротивления, при t = 600-650ºС наступает температурная пластичность и сталь теряет свою несущую способность.

При отрицательных температурах прочность стали возрастает, временное сопротивление и предел текучести сближаются, ударная вязкость падает и сталь становится хрупкой.

Склонность стали к хрупкому разрушению при низких температурах зависит от величины зерна (мелкозернистые стали лучше сопротивляются хрупкому разрушению и имеют более низкий порог хладноломкости), наличия вредных примесей (фосфор, сера, азот, водород), толщины проката (масштабный фактор).

Наиболее склонны к хрупкому разрушению кипящие стали.

Виды разрушений

 

Разрушение металла в зависимости от степени развития пластических деформаций может быть хрупким или пластичным (вязким).

Хрупкое разрушение происходит путем отрыва (рис.1.3, а), без заметных деформаций, внезапно. Пластическое разрушение является результатом сдвига, сопровождается значительными деформациями, которые могут быть своевременно обнаружены, и поэтому менее опасно (рис.1.3, б).

Один и тот же материал может разрушаться хрупко и пластично (вязко) в зависимости от условий работы (вид напряженного состояния, наличия концентраторов напряжений, температура эксплуатации).

При отрыве разрушается межатомная решетка. Зная силы сцепления между атомами, можно определить прочность кристалла при отрыве, которая равна приблизительно 3300 кН/см².

Сдвинуть одну часть кристалла относительно другой значительно легче, так как касательные напряжения, которые необходимо приложить для смещения составляют около 1300 кН/см² (рис.1.3, в), что намного больше предела текучести реальных материалов.

 
 

Рис.1.3. Виды разрушения:

а - отрыв; б - срез; в - схема смещения атомных слоев при сдвиге; г - диаграмма работы материала; 1 – плоское скольжение; 2 – вязкое разрушение; 3 – хрупкое разрушение

Рис.1.5. Идеализированная диаграмма работы стали

 

 

При сжатии коротких образцов, которые не могут потерять устойчивость, сталь ведет себя также как и при растяжении, т.е. предел пропорциональности, предел текучести и модуль упругости совпадают.

Однако разрушить при сжатии короткие образцы, изготовленные из пластической стали, и определить временное сопротивление не представляется возможным, поскольку образец сжимается и в конечном результате расплющивается. Высокопрочные стали, с пониженной пластичностью, могут разрушаться по наклонному сечению от среза.

Так как в упругой и упругопластической стадиях работы сталь ведет себя при растяжении и сжатии одинаково, то соответствующие характеристики принимаются также одинаковыми.

Повышенная несущая способность при сжатии некоторых образцов в области само упрочнения используется при работе стали на смятие.

При работе материала в упругой стадии повторное загружение не отражается на работе, поскольку упругие деформации обратимы.

При повторном нагружении металла в упругопластической области возникает наклеп. Увеличивается область упругой работы, а пластичность падает. Сталь становится более хрупкой.

Многократное повторное нагружение может привести к разрушению при меньших напряжениях, чем временное сопротивление и даже предел текучести. Это явление называется усталостью металла, а разрушение – усталостным.

Способность металла сопротивляться усталостному разрушению называется выносливостью, а напряжения, при которых происходит разрушение – вибрационной прочностью Ơвб.

Усталостное разрушение происходит вследствие накопления числа дислокаций при каждом загружении и концентрации их около стыков зерен с последующим скоплением в большие группы, что приводит к рыхлению металла в этом месте и образованию трещин, которые развиваясь, приводят к разрыву. При каждом нагружении деформации в поврежденном месте нарастают. Линии разгрузки не совпадают с линиями нагрузки, образуя петли гистерезиса (см. рис.1.2, в). Площадь петли характеризует энергию, затраченную при каждом цикле нагрузки на образование новых несовершенств в атомной структуре и дислокаций там, где образуются трещины, металл как бы перетирается, образуя гладкие истертые поверхности, затем трещина быстро развивается и происходит разрыв.

Вибрационная прочность зависит от числа циклов загружения (рис.1.6.) и вида загружения.

При большом числе циклов кривая вибрационной прочности (кривая Вел Лера) асимметрически приближается к некоторому пределу, называемому пределом выносливости (усталости). Обычно проводят 2х106 циклов нагружения, чтобы определить выносливость, так как меньшее количество циклов мало отличается от предела усталости.

Алюминиевые сплавы не имеют предела усталости, и их вибрационная прочность при увеличении числа циклов постоянно снижается (см. рис.1.6).

Большое влияние на усталостную прочность оказывает концентрация напряжений. Так при круглом отверстии (кривая 3, рис. 1.7) предел упругости снижается в 1,4 раза, а при остром концентраторе (кривая 7) около начала флангового шва - в 3,5 раза.

Применение высокопрочных сталей в конструкциях, подвергающихся многократному воздействию повторных нагрузок, не всегда оправдывается по экономическим соображениям.

Значительное снижение усталостной прочности наблюдается даже при необработанных после огневой резки или гильотинных ножниц кромок деталей. Поэтому кромки следует обрабатывать механическим способом.

Особенно чувствительны к концентрации напряжений стали повышенной и высокой прочности.

Повысить усталостную прочность конструкции можно путем снижения концентрации напряжений (механическая обработка кромок, зачистка швов, обеспечение плавного изменения сечения и т. д.), создания в местах концентрации напряжений сжатия, например, с помощью нагрева мест концентрации, предварительной вытяжкой конструкций, обкаткой подкрановых балок кранами с допустимой перегрузкой и т. д.

 

 
 

 

 

Рис.1.6. Зависимость вибрационной прочности от числа циклов для стали (1) и алюминиевых сплавов (2) Рис.1.7. Зависимость предела усталости от коэффициента 1 – сталь С255 с необработанной поверх- ностью, преобладает растяжение; 2 – то же, преобладает сжатие; 3 – сталь С255, полка с отверстием (преобладает растя- жение); 4 – сталь С235 с необработанной поверхностью, преобладает растяжение; 5 – сталь С255, основной металл около сварного необработанного соединения встык; 6 – то же, для стали С345; 7 – сталь С 255, основной металл у начала флангового шва; 8 – то же, сталь С345    

-------------------------------------------------------------------------------------------------------

1. Развитие металлических конструкций, общая характеристика, область применения, достоинства и недостатки (стр.1-9).

2. Как выбирают стали при проектировании? (9-10; 12-13).

3. Требуемые свойства металлов и их оценка (стр.10-11).

4. Классификация сталей (стр.11-12).

5. Какие факторы влияют на свойства стали? (стр.13-15).

6. Какие виды разрушения металла? (стр.15).

7. Как работает металл под нагрузкой при однократном нагружении?(стр.16-17)

8. Что такое усталость металла? Какие меры принимают для повышения усталостной прочности? (стр.18-19).

9. Что влияет на снижение усталостной прочности? (стр.19).

 

 

Рис.2.1. Изменение эпюры напряжений в изгибаемом элементе при развитии

Изгибаемого элемента

по высоте балки в упругой стадии будет существенно отличаться от предыдущего случая, а при дальнейшем увеличении нагрузки вплоть до появления пластического шарнира (Ơпр = ƠT) обусловит более развитую пластическую область вблизи нейтральной оси.

При рассмотренном многократном напряженном состоянии проверку прочности балки можно производить по формуле:

 

 

(2.14)

 

 

где 1,15 – коэффициент, учитывающий развитие пластических деформаций в балке [аналогично коэффициенту “ c ” в формуле (2.12)].

 

 

При изгибе относительно двух главных осей инерции поперечного сечения

балки (x, y) – косом изгибе - допускается проверку прочности. производить по упрощенной формуле

 

Mx/(cx Wx.n.min)+My/(cy Wy.n.min) ≤ Ry γc при τ≤ 0.5Rs (2.15)

 

где и даются в зависимости от формы сечения (см.прил.1); - зависит от величины .

 

 
 

Рис. 2.3. Распределение пластических деформаций в двутавровой балке при сложном напряженном состоянии.

 

 

РАЗДЕЛ 3. Сортамент

Рис.3.1.Основные виды профилей

 

 

Поставляется прокат (листовой, фасонный) партиями. Партия состоит из проката одного размера, одной плавки-ковша и одного режима термообработки. При проверке качества металла от партии отбирают любые две пробы. Прокат поставляется как в горячекатаном, так и в термообработанном состоянии.

Разнообразие видов профилей, входящих в сортамент, частая градация размеров одного вида профиля обеспечивает экономическое проектирование конструкций при возможности создания разнообразных конструктивных форм.

Стоимость разных профилей различна. Наиболее дешевыми являются листовая сталь, прокатные двутавры и швеллеры, что стимулирует их широкое применение. Применение при проектировании большого разнообразия профилей увеличивает объем работы на заводах металлоконструкций по сортировке, складированию, транспортировке, правке профилей и т.п. С целью уменьшения объема работ при изготовлении конструкций введены сокращенные сортаменты, составленные для проектирования строительных конструкций из наиболее употребляемых и экономичных профилей.

Изготовленные на заводах металлические элементы конструкций (балки, колонны, фермы и т.п.) собираются на строительных площадках в конструктивные комплексы – сооружения.

Рассмотрение различных критериев эффективности профиля при работе на изгиб и сжатие показало, что решающую роль имеет “тонкостенность” профиля – отношение его высоты к его толщине , чем оно больше, тем профиль экономичнее. Для прокатных профилей технология прокатки ограничивает толщину стенки 4-6 мм, поэтому применение тонкостенных сварных балок для изгибаемых элементов, а также гнутосварочных коробчатых профилей для сжатых элементов более эффективны, чем применение прокатных профилей, так как толщина стенки в них не ограничена прокатом.

 

Листовая сталь

Листовая сталь широко применяется в строительстве, поставляется в пакетах, рулонах и классифицируется следующим образом.

Сталь толстолистовая (ГОСТ 19903- 74). Сортамент этой стали включает листы толщиной от 4 мм до 160 мм, шириной от 600 мм до 3800 мм. Наиболее ходовой является ширина до 2400 мм. Листовая горячекатаная сталь поставляется в листах длиной от 6-12 м и толщиной до 160 мм или в рулонах толщиной от 1,2 до 12 мм, шириной от 500…2200 мм. Листы толщиной от 6 до 12 мм имеют градацию по толщине через 1 мм, далее через 2; 3 и 5 мм. Толстолистовая сталь широко используется в листовых конструкциях, в элементах сплошных систем (балок, колонн, рамах и т.д.).

Сталь тонколистовая до 4 мм прокатывается холодным и горячим способами. Холоднокатаная сталь (ГОСТ 19904-90) значительно дороже горячекатаной (ГОСТ 19903-74).Тонкая листовая сталь применятся при изготовлении гнутых и штампованных тонкостенных профилей, для кровельных покрытий и т.п. Из холоднокатаной, оцинкованной, рулонированной стали изготавливают профилированные настилы.

Сталь широкополосная универсальная (ГОСТ 82-70) благодаря прокату между четырьмя валками имеет ровные края. Толщина стали от 6 до 60 мм, ширина от 200 до 1050 мм и длина от 5 до 12 м. Применение универсальной стали уменьшает трудоемкость изготовления конструкций, так как не требуется резка и выравнивание кромок строжкой.

Сталь рифленая (ГОСТ 8568-77) и просечно-вытяжная (ГОСТ 8706-58) применяется для ходовых площадок.

 

Уголковые профили

Уголковые профили прокатывают в виде равнополочных (ГОСТ 8509-86) инеравнополочных (ГОСТ 8510-86)уголков (см. рис. 3.1, б). Сортамент уголков весьма разнообразен: от очень малых профилей с площадью сечения 1-1,5 см² до мощных профилей с площадью сечения 140 см². Полки уголков имеют параллельные грани, что облегчает конструирование. Уголки широко используются в легких сквозных конструкциях. Рабочие стержни из уголков обычно компонуются в симметричные сечения из двух или четырех уголков (рис.3.2.). Более экономичны уголки с меньшими толщинами полок. Сжатые стержни сечения обладают большей устойчивостью, особенно составленные из тонких уголков. В стержнях с отверстиями для болтов ослабление сечения отверстиями тем меньше, чем тоньше полки.

 

Швеллеры

 

Геометрические характеристики сечения швеллеров (см. рис. 3.1, в, ж) определяются его номером, который соответствует высоте стенки швеллера

 

 

 
 

Рис.3.2.Компановка сечений стержней из прокатных профилей

 

(в см). Сортамент (ГОСТ 8240-89) включает швеллеры от № 5 до № 40 с уклоном внутренних граней полок (см. прил. 16, табл. 5). Однако, уклон внутренних граней полок затрудняет конструирование. В ГОСТ входят и

швеллеры с параллельными гранями полок, сечения которых имеют лучшие расчетные характеристики относительно осей x и y, так как упрощают болтовые крепления к полкам. Швеллеры применяются в мощных стержневых конструкциях (мостах, большепролетных фермах и т.п.), а также в колоннах, связях и кровельных прогонах.

Стержни из швеллеров, работающие на осевую силу, компонуются в жесткие относительно осей x и y симметричные сечения (рис. 3.2, б).

 

 

Двутавры

 

Двутавры – основной балочный профиль – имеют наибольшее разнообразие по типам (см. рис. 3.1, г-ж), которые соответствуют определенным областям применения.

Балки двутавровые обыкновенные (ГОСТ 8239-89) как и швеллеры, имеют уклон внутренних граней полок и обозначаются номером, соответствующим их высоте в см (рис.3.1, г). В сортамент входят профили от № 10 до № 60 (см. прил.1, табл.3). Стенки у крупных двутавров имеют минимальную толщину и по условиям устойчивости достигают 1/55 высоты двутавра. Чем тоньше стенка, тем выгоднее сечение балки при работе ее на изгиб. Однако по условиям технологии прокатки у большинства двутавров стенки получаются значительно толще, чем это требуется по условию их устойчивости. Благодаря сосредоточению материала в полках двутавры имеют большую жесткость относительно оси x, но небольшая ширина полок делает их малоустойчивыми относительно оси y. Двутавры применяются в изгибаемых элементах (балках), а также в ветвях решетчатых колонн и различных опор, где для их устойчивости применяются составные сечения (рис.3.2, в).

Балки двутавровые широкополочные (ГОСТ 26020-81) имеют параллельные грани полок (см. рис.3.1, д). Широкополочные двутавры прокатываются трех типов: нормальные двутавры (Б), широкополочные двутавры (Ш), колонные двутавры (К). Высота балочных профилей (Б) достигает 1000 мм, (Ш) – 700 и (К) – 400 мм при отношении ширины полок к высоте от (при малых высотах) до (при больших высотах). Колонные профили (К) имеют отношение ширины полок к высоте, близкое 1:1, что придает им устойчивость относительно оси y.



Поделиться:


Последнее изменение этой страницы: 2016-08-26; просмотров: 331; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.116.159 (0.15 с.)